看到orbslam2初始化里的Initializer::ReconstructH和Initializer::ReconstructF两个子函数里用到了opencv::SVD分解。这里我将会详细讲解SVD的分解理论!
奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解
假设M是一个m×n阶矩阵,其中的元素全部属于域 K,也就是 实数域或复数域。如此则存在一个分解使得
M = UΣV*,
其中U是m×m阶酉矩阵;Σ是半正定m×n阶对角矩阵;而V*,即V的共轭转置,是n×n阶酉矩阵。这样的分解就称作M的奇异值分解。Σ对角线上的元素Σi,i即为M的奇异值。
常见的做法是为了奇异值由大而小排列。如此Σ便能由M唯一确定了。(虽然U和V仍然不能确定。)
其中酉矩阵定义为:
n阶复方阵U的n个列向量是U空间的一个标准正交基,则U是酉矩阵(Unitary
Matrix)。显然酉矩阵是正交矩阵往复数域上的推广
矩阵Σ的对角线上的元素等于M的奇异值. U和V的列分别是奇异值中的左、右奇异向量。因此,上述定理表明:
一个m × n的矩阵至多有 p = min(m,n)个不同的奇异值。
总是可以找到在Km 的一个正交基U,组成M的左奇异向量。
总是可以找到和Kn的一个正交基V,组成M的右奇异向量。
U是M x M矩阵,其中U的列为MMT的正交特征向量,V为N
x N矩阵,其中V的列为M TM的正交特征向量,再假设r为M矩阵的秩,则存在奇异值分解:
M = UΣV*(v*是v的共轭转置)
其中MMT和MTM的具有相同的奇异值(如果是实数,则是具有相同的特征值)
在齐次方程中
其他非齐次方程组做最小二乘的方法
时间: 2024-11-29 10:12:55