Linux时间子系统之二:Alarm Timer

一、前言

严格来讲Alarm Timer也算POSIX Timer一部分,包含两种类型CLOCK_REALTIME_ALARM和CLOCK_BOOTTIME_ALARM。分别是在CLOCK_REALTIME和CLOCK_BOOTTIME后面加上_ALARM。Alarm Timer之外的POSIX Timer在内核进入cpuidle或者suspend之后,都会因为省电关闭ClockEvent设备而停止计时。而Alarm Timer恰恰借助RTC设备的长供电且具备唤醒功能,在系统进入suspend过程中,将最近一次超时expires写入RTC设备,超时后会将系统从suspend状态唤醒,执行timer超市函数。

这样在程序执行过程中,就不需要一直持有wakelock。

二、背景介绍

Alarm Timer可以说工作在两种状态下,一种是和其他Timer一样的基于hrtimer;另一种是在系统进入suspend后基于RTC设备。

RTC设备在系统外独立供电,RTC具备Alarm功能。在Alarm触发后,通过中断唤醒suspend的系统。

在device_initcall-->alarmtimer_init时,注册一个alarmtimer的platform_device,驱动为alarmtimer_driver。将alarmtimer_suspend作为钩子函数插入系统suspend流程,这样就将suspend和Alarm Timer功能挂钩了。

三、重要数据结构

struct alarm_base作为AlarmTimer时钟类型结构体,包含ALARM_REALTIME和ALARM_BOOTTIME两种。


static struct alarm_base {
  spinlock_t lock;---------------------------------互斥访问锁
  struct timerqueue_head timerqueue;-------AlarmTimer自己维护了expires红黑树。
  struct hrtimer timer;--------------------------将其加入到hrtimer_bases对应的红黑树中。
  ktime_t (*gettime)(void);--------------------获取对应类型时钟的时间函数
  clockid_t base_clockid;------------------------时钟类型ID,CLOCK_REALTIME和CLOCK_BOOTTIME
} alarm_bases[ALARM_NUMTYPE];

CLOCK_REALTIME_ALARM和CLOCK_REALTIME、CLOCK_BOOTTIME_ALARM和CLOCK_BOOTTIME都是用同样的base_clockid,但是_ALARM维护的alarm_bases[ALARM_NUMTYPE].timerqueue将他们与其他hrtimer区分开了。

struct k_clock alarm_clock作为两种类型共用的时钟/Timer函数:


struct k_clock alarm_clock = {
  .clock_getres = alarm_clock_getres,
  .clock_get = alarm_clock_get,
  .timer_create = alarm_timer_create,
  .timer_set = alarm_timer_set,
  .timer_del = alarm_timer_del,
  .timer_get = alarm_timer_get,
  .nsleep = alarm_timer_nsleep,
};

static struct rtc_timer rtctimer;--------------------RTC Timer

static struct rtc_device *rtcdev;-------------------RTC设备对应的结构体

struct rtc_time是RTC设备表示的时间格式:


struct rtc_time {
  int tm_sec;
  int tm_min;
  int tm_hour;
  int tm_mday;
  int tm_mon;
  int tm_year;
  int tm_wday;
  int tm_yday;
  int tm_isdst;
};

struct ktime_t是内核时间格式。

这两种时间格式的转换,rtc_time到ktime_t通过rtc_tm_to_ktime;ktime_t到rtc_time通过rtc_ktime_to_tm。

四、AlarmTimer正常工作状态下运行

五、AlarmTimer在进入Suspend时、Suspend中、Resume时状态分析

时间: 2024-10-10 15:16:50

Linux时间子系统之二:Alarm Timer的相关文章

Linux时间子系统(十七) ARM generic timer驱动代码分析

一.前言 关注ARM平台上timer driver(clocksource chip driver和clockevent chip driver)的驱动工程师应该会注意到timer硬件的演化过程.在单核时代,各个SOC vendor厂商购买ARM core的IP,然后自己设计SOC上的peripherals,这里面就包括了timer的硬件.由于没有统一的标准,各个厂商的设计各不相同,这给驱动工程师带来了工作量.然而,如果仅仅是工作量的话就还好,实际上,不仅仅如此.linux的时间子系统要求硬件t

Linux时间子系统(十二) periodic tick

一.tick device概念介绍 1.数据结构 在内核中,使用struct tick_device来抽象系统中的tick设备,如下: struct tick_device { struct clock_event_device *evtdev; enum tick_device_mode mode; }; 从上面的定义就可以看出:所谓tick device其实就是工作在某种模式下的clock event设备.工作模式体现在tick device的mode成员,evtdev指向了和该tick d

Linux时间子系统专题汇总

DroidPhone关于Linux时间子系统专题: http://blog.csdn.net/DroidPhone/article/category/1263459 Linux时间子系统之一:clock source(时钟源) Linux时间子系统之二:表示时间的单位和结构 Linux时间子系统之三:时间的维护者:timekeeper Linux时间子系统之四:定时器的引擎:clock_event_device Linux时间子系统之五:低分辨率定时器的原理和实现 Linux时间子系统之六:高精

Linux时间子系统(十五) clocksource

一.前言 和洋葱一样,软件也是有层次的,内核往往需要对形形色色的某类型的驱动进行抽象,屏蔽掉其具体的特质,获取该类驱动共同的逻辑,而又根据这些逻辑撰写该类驱动的抽象层.嵌入式系统总是会提供timer的硬件block,软件需要对timer硬件提供的功能进行抽象:linux kernel将timer类型的硬件抽象成两个组件,一是free running的counter,另外一个是指定的counter值上产生中断的能力.本文主要描述第一个组件,在内核中被称作clock source. 二.什么是clo

Linux时间子系统之八:动态时钟框架(CONFIG_NO_HZ、tickless)

在前面章节的讨论中,我们一直基于一个假设:Linux中的时钟事件都是由一个周期时钟提供,不管系统中的clock_event_device是工作于周期触发模式,还是工作于单触发模式,也不管定时器系统是工作于低分辨率模式,还是高精度模式,内核都竭尽所能,用不同的方式提供周期时钟,以产生定期的tick事件,tick事件或者用于全局的时间管理(jiffies和时间的更新),或者用于本地cpu的进程统计.时间轮定时器框架等等.周期性时钟虽然简单有效,但是也带来了一些缺点,尤其在系统的功耗上,因为就算系统目

Linux时间子系统之六:高精度定时器(HRTIMER)的原理和实现

上一篇文章,我介绍了传统的低分辨率定时器的实现原理.而随着内核的不断演进,大牛们已经对这种低分辨率定时器的精度不再满足,而且,硬件也在不断地发展,系统中的定时器硬件的精度也越来越高,这也给高分辨率定时器的出现创造了条件.内核从2.6.16开始加入了高精度定时器架构.在实现方式上,内核的高分辨率定时器的实现代码几乎没有借用低分辨率定时器的数据结构和代码,内核文档给出的解释主要有以下几点: 低分辨率定时器的代码和jiffies的关系太过紧密,并且默认按32位进行设计,并且它的代码已经经过长时间的优化

Linux usb子系统(二):USB设备驱动usb-skeleton.c

usb驱动分为通过usbfs操作设备的用户空间驱动,内核空间的内核驱动.两者不能同时进行,否则容易引发对共享资源访问的问题,死锁!使用了内核驱动,就不能在usbfs里驱动该设备. 下面转载的一篇分析usb-skeleton.c文章. 初次接触与OS相关的设备驱动编写,感觉还挺有意思的,为了不至于忘掉看过的东西,笔记跟总结当然不可缺,更何况我决定为嵌入式卖命了.好,言归正传,我说一说这段时间的收获,跟大家分享一下Linux的驱动开发.但这次只先针对Linux的USB子系统作分析,因为周五研讨老板催

Linux时间子系统(一) 基本概念

本文使用Q & A的方式来和大家以前探讨一下时间的基本概念 一.什么是时间? 这个问题实在是太复杂了,我都不知道这是一个物理学.宇宙学.还是热力学异或是哲学问题,我只是想从几个侧面来了解一下时间这个概念.本节内容都是我坐在公交车上瞎想的,对物理学有兴趣的人可以指出我的错误(一个搞linux kernel的人不会有太深刻的物理学知识的),对Linux时间子系统有兴趣的人还是忽略这个小节吧. 1.时间和空间以及相对性 有没有绝对时间的概念呢?时间是否是独立于一切存在的呢?相信有绝对时间的存在比较符合

Linux时间子系统(二) 软件架构

一.前言 本文的主要内容是描述内核时间子系统的软件框架.首先介绍了从旧的时间子系统迁移到新的时间子系统的源由,介绍新的时间子系统的优势.第三章汇整了时间子系统的相关文件以及内核配置.最后描述各种内核配置下的时间子系统的数据流和控制流. 二.背景介绍 1.传统内核时间子系统的软件架构 让我们先回到远古的2.4内核时代,其内核的时间子系统的软件框架如下: 首先,在每个architecture相关的代码中要有实现clock event和clock source模块.这里听起来名字是高大上,实际上,这里