惊:FastThreadLocal吞吐量居然是ThreadLocal的3倍!!!

说明

接着上次手撕面试题ThreadLocal!!!面试官一听,哎呦不错哦!本文将继续上文的话题,来聊聊FastThreadLocal,目前关于FastThreadLocal的很多文章都有点老有点过时了(本文将澄清几个误区),很多文章关于FastThreadLocal介绍的也不全,希望本篇文章可以带你彻底理解FastThreadLocal!!!

FastThreadLocal是Netty提供的,在池化内存分配等都有涉及到!?

关于FastThreadLocal,零度准备从这几个方面进行讲解:

  • FastThreadLocal的使用。
  • FastThreadLocal并不是什么情况都快,你要用对才会快。
  • FastThreadLocal利用字节填充来解决伪共享问题。
  • FastThreadLocal比ThreadLocal快,并不是空间换时间。
  • FastThreadLocal不在使用ObjectCleaner处理泄漏,必要的时候建议重写onRemoval方法。
  • FastThreadLocal为什么快?

FastThreadLocal的使用

FastThreadLocal用法上兼容ThreadLocal

FastThreadLocal使用示例代码:

public class FastThreadLocalTest {
    private static FastThreadLocal<Integer> fastThreadLocal = new FastThreadLocal<>();

    public static void main(String[] args) {

        //if (thread instanceof FastThreadLocalThread) 使用FastThreadLocalThread更优,普通线程也可以
        new FastThreadLocalThread(() -> {
            for (int i = 0; i < 100; i++) {
                fastThreadLocal.set(i);
                System.out.println(Thread.currentThread().getName() + "====" + fastThreadLocal.get());
                try {
                    Thread.sleep(200);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "fastThreadLocal1").start();

        new FastThreadLocalThread(() -> {
            for (int i = 0; i < 100; i++) {
                System.out.println(Thread.currentThread().getName() + "====" + fastThreadLocal.get());
                try {
                    Thread.sleep(200);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "fastThreadLocal2").start();
    }
}

代码截图:

代码运行结果:

我们在回顾下之前的ThreadLocal的 最佳实践做法:

try {
    // 其它业务逻辑
} finally {
    threadLocal对象.remove();
}

备注: 通过上面的例子,我们发现FastThreadLocal和ThreadLocal在用法上面基本差不多,没有什么特别区别,个人认为,这就是FastThreadLocal成功的地方,它就是要让用户用起来和ThreadLocal没啥区别,要兼容!

使用FastThreadLocal居然不用像ThreadLocal那样先try ………………… 之后finally进行threadLocal对象.remove();

由于构造FastThreadLocalThread的时候,通过FastThreadLocalRunnable对Runnable对象进行了包装:

FastThreadLocalRunnable.wrap(target)从而构造了FastThreadLocalRunnable对象。

FastThreadLocalRunnable在执行完之后都会调用FastThreadLocal.removeAll();

备注: FastThreadLocal不在使用ObjectCleaner处理泄漏,必要的时候建议重写onRemoval方法。关于这块将在本文后面进行介绍,这样是很多网上资料比较老的原因,这块已经去掉了。

如果是普通线程,还是应该最佳实践:

finally {
fastThreadLocal对象.removeAll();
}

注意: 如果使用FastThreadLocal就不要使用普通线程,而应该构建FastThreadLocalThread,关于为什么这样,关于这块将在本文后面进行介绍:FastThreadLocal并不是什么情况都快,你要用对才会快。

FastThreadLocal并不是什么情况都快,你要用对才会快

首先看看netty关于这块的测试用例:
代码路径:https://github.com/netty/netty/blob/4.1/microbench/src/main/java/io/netty/microbench/concurrent/FastThreadLocalFastPathBenchmark.java

备注: 在我本地进行测试,FastThreadLocal的吞吐量是jdkThreadLocal的3倍左右。机器不一样,可能效果也不一样,大家可以自己试试,反正就是快了不少。

关于ThreadLocal,之前的这篇:手撕面试题ThreadLocal!!!已经详细介绍了。

FastThreadLocal并不是什么情况都快,你要用对才会快!!!

注意: 使用FastThreadLocalThread线程才会快,如果是普通线程还更慢!
注意: 使用FastThreadLocalThread线程才会快,如果是普通线程还更慢!
注意: 使用FastThreadLocalThread线程才会快,如果是普通线程还更慢!

netty的测试目录下面有2个类:

  • FastThreadLocalFastPathBenchmark
  • FastThreadLocalSlowPathBenchmark

路径:https://github.com/netty/netty/blob/4.1/microbench/src/main/java/io/netty/microbench/concurrent/

FastThreadLocalFastPathBenchmark测试结果: 是ThreadLocal的吞吐量的3倍左右。

FastThreadLocalSlowPathBenchmark测试结果: 比ThreadLocal的吞吐量还低。

测试结论: 使用FastThreadLocalThread线程操作FastThreadLocal才会快,如果是普通线程还更慢!

注释里面给出了三点:

  • FastThreadLocal操作元素的时候,使用常量下标在数组中进行定位元素来替代ThreadLocal通过哈希和哈希表,这个改动特别在频繁使用的时候,效果更加显著!
  • 想要利用上面的特征,线程必须是FastThreadLocalThread或者其子类,默认DefaultThreadFactory都是使用FastThreadLocalThread的
  • 只用在FastThreadLocalThread或者子类的线程使用FastThreadLocal才会更快,因为FastThreadLocalThread 定义了属性threadLocalMap类型是InternalThreadLocalMap。如果普通线程会借助ThreadLocal。

我们看看NioEventLoopGroup细节:

看到这里,和刚刚我们看到的注释内容一致的,是使用FastThreadLocalThread的。

netty里面使用FastThreadLocal的举例常用的:

池化内存分配:

会使用到Recycler

而Recycler也使用了FastThreadLocal

我们再看看看测试类:

备注: 我们会发现FastThreadLocalFastPathBenchmark里面的线程是FastThreadLocal。

备注: 我们会发现FastThreadLocalSlowPathBenchmark里面的线程 不是FastThreadLocal

FastThreadLocal只有被的线程是FastThreadLocalThread或者其子类使用的时候才会更快,吞吐量我这边测试的效果大概3倍左右,但是如果是普通线程操作FastThreadLocal其吞吐量比ThreadLocal还差!

FastThreadLocal利用字节填充来解决伪共享问题

关于CPU 缓存 内容来源于美团:https://tech.meituan.com/2016/11/18/disruptor.html

下图是计算的基本结构。L1、L2、L3分别表示一级缓存、二级缓存、三级缓存,越靠近CPU的缓存,速度越快,容量也越小。所以L1缓存很小但很快,并且紧靠着在使用它的CPU内核;L2大一些,也慢一些,并且仍然只能被一个单独的CPU核使用;L3更大、更慢,并且被单个插槽上的所有CPU核共享;最后是主存,由全部插槽上的所有CPU核共享。

当CPU执行运算的时候,它先去L1查找所需的数据、再去L2、然后是L3,如果最后这些缓存中都没有,所需的数据就要去主内存拿。走得越远,运算耗费的时间就越长。所以如果你在做一些很频繁的事,你要尽量确保数据在L1缓存中。

另外,线程之间共享一份数据的时候,需要一个线程把数据写回主存,而另一个线程访问主存中相应的数据。

下面是从CPU访问不同层级数据的时间概念:

可见CPU读取主存中的数据会比从L1中读取慢了近2个数量级。

缓存行

Cache是由很多个cache line组成的。每个cache line通常是64字节,并且它有效地引用主内存中的一块儿地址。一个Java的long类型变量是8字节,因此在一个缓存行中可以存8个long类型的变量。

CPU每次从主存中拉取数据时,会把相邻的数据也存入同一个cache line。

在访问一个long数组的时候,如果数组中的一个值被加载到缓存中,它会自动加载另外7个。因此你能非常快的遍历这个数组。事实上,你可以非常快速的遍历在连续内存块中分配的任意数据结构。

伪共享

由于多个线程同时操作同一缓存行的不同变量,但是这些变量之间却没有啥关联,但是每次修改,都会导致缓存的数据变成无效,从而明明没有任何修改的内容,还是需要去主存中读(CPU读取主存中的数据会比从L1中读取慢了近2个数量级)但是其实这块内容并没有任何变化,由于缓存的最小单位是一个缓存行,这就是伪共享。

如果让多线程频繁操作的并且没有关系的变量在不同的缓存行中,那么就不会因为缓存行的问题导致没有关系的变量的修改去影响另外没有修改的变量去读主存了(那么从L1中取是从主存取快2个数量级的)那么性能就会好很多很多。

有伪共享 和没有的情况的测试效果

代码路径:https://github.com/jiangxinlingdu/nettydemo

nettydemo

利用字节填充来解决伪共享,从而速度快了3倍左右。

FastThreadLocal使用字节填充解决伪共享

之前介绍ThreadLocal的时候,说过ThreadLocal是用在多线程场景下,那么FastThreadLocal也是用在多线程场景,大家可以看下这篇:手撕面试题ThreadLocal!!!,所以FastThreadLocal需要解决伪共享问题,FastThreadLocal使用字节填充解决伪共享。

这个是我自己手算的,通过手算太麻烦,推荐一个工具JOL

http://openjdk.java.net/projects/code-tools/jol/

推荐IDEA插件:https://plugins.jetbrains.com/plugin/10953-jol-java-object-layout

代码路径:https://github.com/jiangxinlingdu/nettydemo

nettydemo

通过这个工具算起来就很容易了,如果以后有类似的需要看的,不用手一个一个算了。

FastThreadLocal被FastThreadLocalThread进行读写的时候也可能利用到缓存行

并且由于当线程是FastThreadLocalThread的时候操作FastThreadLocal是通过indexedVariables数组进行存储数据的的,每个FastThreadLocal有一个常量下标,通过下标直接定位数组进行读写操作,当有很多FastThreadLocal的时候,也可以利用缓存行,比如一次indexedVariables数组第3个位置数据,由于缓存的最小单位是缓存行,顺便把后面的4、5、6等也缓存了,下次刚刚好另外FastThreadLocal下标就是5的时候,进行读取的时候就直接走缓存了,比走主存可能快2个数量级。

一点疑惑

问题:为什么这里填充了9个long值呢???

我提了一个issue:https://github.com/netty/netty/issues/9284

虽然也有人回答,但是感觉不是自己想要的,说服不了自己!!!

FastThreadLocal比ThreadLocal快,并不是空间换时间

现在清理已经去掉,本文下面会介绍,所以FastThreadLocal比ThreadLocal快,并不是空间换时间,FastThreadLocal并没有浪费空间!!!

FastThreadLocal不在使用ObjectCleaner处理泄漏,必要的时候建议重写onRemoval方法

最新的netty版本中已经不在使用ObjectCleaner处理泄漏:

https://github.com/netty/netty/commit/9b1a59df383559bc568b891d73c7cb040019aca6#diff-e0eb4e9a6ea15564e4ddd076c55978de

https://github.com/netty/netty/commit/5b1fe611a637c362a60b391079fff73b1a4ef912#diff-e0eb4e9a6ea15564e4ddd076c55978de

去掉原因:

https://github.com/netty/netty/issues/8017

我们看看FastThreadLocal的onRemoval

如果使用的是FastThreadLocalThread能保证调用的,重写onRemoval做一些收尾状态修改等等


FastThreadLocal为什么快?

FastThreadLocal操作元素的时候,使用常量下标在数组中进行定位元素来替代ThreadLocal通过哈希和哈希表,这个改动特别在频繁使用的时候,效果更加显著!计算该ThreadLocal需要存储的位置是通过hash算法确定位置:
int i = key.threadLocalHashCode & (len-1);而FastThreadLocal就是一个常量下标index,这个如果执行次数很多也是有影响的。

并且FastThreadLocal利用缓存行的特性,FastThreadLocal是通过indexedVariables数组进行存储数据的,如果有多个FastThreadLocal的时候,也可以利用缓存行,比如一次indexedVariables数组第3个位置数据,由于缓存的最小单位是缓存行,顺便把后面的4、5、6等也缓存了,下次刚刚好改线程需要读取另外的FastThreadLocal,这个FastThreadLocal的下标就是5的时候,进行读取的时候就直接走缓存了,比走主存可能快2个数量级而ThreadLocal通过hash是分散的。



如果读完觉得有收获的话,欢迎点赞、关注、加公众号 [匠心零度] ,查阅更多精彩历史!!!

原文地址:https://www.cnblogs.com/jiangxinlingdu/p/11123538.html

时间: 2024-10-26 05:07:12

惊:FastThreadLocal吞吐量居然是ThreadLocal的3倍!!!的相关文章

惊!VUE居然数据不能驱动视图?$set详细教程

众所周知.VUE最大的优点就是数据驱动视图.当数据发生改变时,会监听到变化,后渲染到页面上.那么为什么当我们在修改data中声明的数组或对象时.VUE并没有监听到变化呢?这个我也不知道.我们可以后续再进行补充.没见过的来看看.见过的进来瞅瞅.举一个例子~代码如下: <template> <div> <p>这是我定义的数组</p> <div>{{this.arr}}</div> <button @click="chang

FastThreadLocal(一)

FastThreadLocal JDK原生ThreadLocal 在日常并发编程中,锁,CAS和线程局部变量一直是实用的三板斧.Java提供的线程局部不变量就是ThreadLocal.每个线程局部变量都只可以被所属的线程进行读写,优美地规避了线程安全问题. ThreadLocal的使用也极其简单.(已经会的读者可跳过) public class ThreadLocalTest { //展示的数据类 public static class Data{ int data; public Data(i

ThreadLocal简介与原理

一.引入场景 1. 打印方法执行的耗时 public void service(){ before(); doSomething(); after(); } 2. 在before和after记录当前时间,两者相减得到doSomething()的耗时 private long startTime; // 定义变量开始时间 public void before(){ startTime=System.CurrentTimeMills(); // 记录开始时间 } public void doSome

【CNMP系列】CNMP之路,系统起步。

简单的来理解,我所说的CNMP,不是CNM+P,而是CentOs+Nginx+MySql+PHP,也可以单纯的理解为LNMP,但是系统是我们自己选的,虽说是Linux的一个分支,但我就喜欢CentOs的这个C. 好的,我们开搞服务器. 工欲善其事,必先利其器,首先,你需要两台电脑,为了更好的去模拟.然后,恩,就是你这个人了. 来看下我的配置吧. 硬件设施: 一台mac pro13年款电脑(可有可无),一台Windows电脑(Win7系统),键盘鼠标随意. 软件设施: Vmware12,CentO

使用异步servlet提升性能

本文发布之后, 收到了很多的反馈.基于这些反馈,我们更新了文中的示例,使读者更容易理解和掌握, 如果您发现错误和遗漏,希望能给我们提交反馈,帮助我们改进. 本文针对当今 webapp 中一种常碰到的问题,介绍相应的性能优化解决方案.如今的WEB程序不再只是被动地等待浏览器的请求, 他们之间也会互相进行通信. 典型的场景包括 在线聊天, 实时拍卖等 -- 后台程序大部分时间与浏览器的连接处于空闲状态, 并等待某个事件被触发. 这些应用引发了一类新的问题,特别是在负载较高的情况下.引发的状况包括线程

100篇大数据文章[转]

摘要:PayPal高级工程总监Anil Madan写了篇大数据的文章,一共有100篇大数据的论文,涵盖大数据技术栈,全部读懂你将会是大数据的顶级高手. 开源(Open Source)用之于大数据技术,其作用有二:一方面,在大数据技术变革之路上,开源在众人之力和众人之智推动下,摧枯拉朽,吐故纳新,扮演着非常重要的推动作用.另一方面,开源也给大数据技术构建了一个异常复杂的生态系统.每一天,都有一大堆"新"框架."新"类库或"新"工具,犹如雨后春笋般涌

读完这100篇论文,你也是大数据高手!

引言 PayPal高级工程总监Anil Madan写了这篇大数据的文章,一共有100篇大数据的论文,涵盖大数据技术栈,全部读懂你将会是大数据的顶级高手.当然主要是了解大数据技术的整个框架,对于我们学习大数据有莫大好处. 开 源(Open Source)用之于大数据技术,其作用有二:一方面,在大数据技术变革之路上,开源在众人之力和众人之智推动下,摧枯拉朽,吐故纳新,扮演着非常重要的 推动作用.另一方面,开源也给大数据技术构建了一个异常复杂的生态系统.每一天,都有一大堆“新”框架.“新”类库或“新”

mysql超出最大连接数解决方法

遇到mysql超出最大连接数,相信不少人第一反应就是查看mysql进程,看有没有慢查询,当然这个做法是完全正确的!但是很多时候真正的问题不在这里.今天有遇到同样的问题,一味查看mysql进程和慢查询日志,无果.后来老大提点了一下,查看一下nginx日志,发现有一两个访问执行时候比较长,然后使用top命令查看了一下服务器负载,惊了,居然超高!最后发现原来有一台web分流主机挂了,导致另外几台web主机负载增高,从而导致了php-fpm的执行效率降低.那么这跟mysql有什么关系呢?原因很简单,因为

好风凭借力,送我上青云 --投行升级分析报告

好风凭借力,送我上青云 --投行升级分析报告 小C供职在一家国际化的投资银行.一向热衷新事物新技术的部门总监最近参加并观看了IBM产品的<开放心,中国行 首映式>.次日早上,他就甚是激动的来找到小C,开门见山就说:"网络世界那么大,你想不想..."小C "咯噔"一惊,心里:"Oops,这不是当下辞职.炒鱿鱼的新词么?" ,马上故作镇定的回答:"老板,咱们银行世界各处都有分支,咱投行才是我的世界!"总监脸一板:&qu