用requests 爬取豆瓣书评的评论

 1 import requests
 2
 3
 4 url ="https://book.douban.com/subject/1084336/comments/"
 5 response = requests.get(url)
 6 r = response.text
 7
 8 from bs4 import BeautifulSoup
 9 soup = BeautifulSoup(r,"lxml")
10 pattern = soup.find_all("p","comment-content")
11
12 for item in pattern :
13     print(item.text)
14     with open("xiaoshuo.txt","a+",encoding="utf-8") as f :
15         f.write(item.text)
16         f.close()
17
18
19
20
21 # comments = []
22 # for item in pattern :
23 #     comments.append(item.text)
24 #
25 # df = pandas.DataFrame(comments)
26 # df.to_csv("comment.csv")

原文地址:https://www.cnblogs.com/mai1994/p/11145962.html

时间: 2024-10-18 21:09:25

用requests 爬取豆瓣书评的评论的相关文章

爬虫之爬取豆瓣图书的评论

from urllib import request from bs4 import BeautifulSoup as bs #爬取豆瓣最受关注图书榜 resp = request.urlopen('https://book.douban.com/chart?subcat=I') html_data = resp.read().decode('utf-8') #转化为BeautifulSoup对象 soup = bs(html_data,'html.parser') #搜索最受关注的图书列表 t

用requests和etree爬取豆瓣电影评论

写在前面的话 :上一篇文章我们用requests和lxml.etree爬取了豆瓣电影Top250的电影信息,为了能对requests和lxml.etree有更深的理解,下面我们将继续用他们来爬取豆瓣电影的短评 温馨提示 :博主使用的系统为win10,使用的python版本为3.6.5 一.网页分析 首先我们使用chrome浏览器打开某一部电影的评论(这里示例为最近很火的<一出好戏>),我们首先可以判断该网站是一个静态网页,和之前一样我们可以通过构造URL来获取全部网页的内容,但是这次我们尝试使

python 爬取豆瓣电影评论,并进行词云展示及出现的问题解决办法

本文旨在提供爬取豆瓣电影<我不是药神>评论和词云展示的代码样例 1.分析URL 2.爬取前10页评论 3.进行词云展示 1.分析URL 我不是药神 短评 第一页url https://movie.douban.com/subject/26752088/comments?start=0&limit=20&sort=new_score&status=P 第二页url https://movie.douban.com/subject/26752088/comments?sta

爬取豆瓣网评论最多的书籍

相信很多人都有书荒的时候,想要找到一本合适的书籍确实不容易,所以这次利用刚学习到的知识爬取豆瓣网的各类书籍,传送门https://book.douban.com/tag/?view=cloud. 首先是这个程序的结构,html_downloader是html下载器,html_outputer是导出到Excel表,html_parser是解析页面,make_wordcloud是制作词云,spided_main是程序入口,url_manager是URL管理器 主要实现思路是先请求下载需要的html,

爬取豆瓣网图书TOP250的信息

爬取豆瓣网图书TOP250的信息,需要爬取的信息包括:书名.书本的链接.作者.出版社和出版时间.书本的价格.评分和评价,并把爬取到的数据存储到本地文件中. 参考网址:https://book.douban.com/top250 注意:使用正则表达式时,不要在Elements选项卡中直接查看源代码,因为那的源码可能经过Javascript渲染而与原始请求不同,而是需要从Network选项卡中查看源码. import re import json import time import request

Python 2.7_利用xpath语法爬取豆瓣图书top250信息_20170129

大年初二,忙完家里一些事,顺带有人交流爬取豆瓣图书top250 1.构造urls列表 urls=['https://book.douban.com/top250?start={}'.format(str(i) for i in range(0, 226, 25))] 2.模块 requests获取网页源代码 lxml 解析网页 xpath提取 3.提取信息 4.可以封装成函数 此处没有封装调用 python代码: #coding:utf-8 import sys reload(sys) sys.

[python爬虫] BeautifulSoup和Selenium对比爬取豆瓣Top250电影信息

这篇文章主要对比BeautifulSoup和Selenium爬取豆瓣Top250电影信息,两种方法从本质上都是一样的,都是通过分析网页的DOM树结构进行元素定位,再定向爬取具体的电影信息,通过代码的对比,你可以进一步加深Python爬虫的印象.同时,文章给出了我以前关于爬虫的基础知识介绍,方便新手进行学习.        总之,希望文章对你有所帮助,如果存在不错或者错误的地方,还请海涵~ 一. DOM树结构分析 豆瓣Top250电影网址:https://movie.douban.com/top2

【转】爬取豆瓣电影top250提取电影分类进行数据分析

一.爬取网页,获取需要内容 我们今天要爬取的是豆瓣电影top250页面如下所示: 我们需要的是里面的电影分类,通过查看源代码观察可以分析出我们需要的东西.直接进入主题吧! 知道我们需要的内容在哪里了,接下来就使用我们python强大的request库先获取网页内容下来吧!获取内容后,再使用一个好用的lxml库来分析网页内容,然后获取我们的内容就可以做下一步操作了.先贴出使用request库和lxml分析的代码 1 def get_page(i): 2 url = 'https://movie.d

Scrapy 通过登录的方式爬取豆瓣影评数据

Scrapy 通过登录的方式爬取豆瓣影评数据 爬虫 Scrapy 豆瓣 Fly 由于需要爬取影评数据在来做分析,就选择了豆瓣影评来抓取数据,工具使用的是Scrapy工具来实现.scrapy工具使用起来比较简单,主要分为以下几步: 1.创建一个项目 ==scrapy startproject Douban 得到一个项目目录如下: ├── Douban │   ├── init.py │   ├── items.py │   ├── pipelines.py │   ├── settings.py