51单片机IO口模拟UART串口通信

#include <reg52.h>
#include "main.h"
#include "smartcard.h"
#include "stdio.h"

typedef enum { false, true }bool;

#if 0
sbit PIN_RXD = P1^0; //接收发送同一个引脚定义
sbit PIN_TXD = P1^0; //接收发送同一个发送引脚定义
sbit PIN_CLK = P3^1; //智能卡时钟引脚定义
sbit PIN_3v5v = P3^2; //智能卡3v_5v引脚定义
sbit PIN_RST = P3^3; //智能卡复位引脚定义
sbit PIN_CMDVCC = P3^4; //智能卡CMD引脚定义
#else
// test Parity
sbit PIN_RXD = P1^0; //接收 脚定义
sbit PIN_TXD = P1^2; //发送 脚定义
sbit PIN_CLK = P3^5; //智能卡时钟引脚定义
sbit PIN_3v5v = P3^2; //智能卡3v_5v引脚定义
sbit PIN_RST = P3^3; //智能卡复位引脚定义
sbit PIN_CMDVCC = P3^4; //智能卡CMD引脚定义

sbit Test_CLK = P0^3; //接收 脚定义

#endif

bit RxdOrTxd = 0; //指示当前状态为接收还是发送
bit RxdEnd = 0; //接收结束标志
bit TxdEnd = 0; //发送结束标志
uint8_t RxdBuf = 0; //接收缓冲器
uint8_t TxdBuf = 0; //发送缓冲器
void ConfigUART(unsigned int baud);
void StartTXD(unsigned char dat);
void StartRXD();
void test_IO();

//通过嵌套宏定义,制作一张包括0~255各个数字中包含1的个数,其中包含偶数个1,则ParityTable256[i]=0,否则ParityTable256[i]=1;

static const bool ParityTable256[256] =
{
#define P2(n) n, n^1, n^1, n
#define P4(n) P2(n), P2(n^1), P2(n^1), P2(n)
#define P6(n) P4(n), P4(n^1), P4(n^1), P4(n)
P6(0), P6(1), P6(1), P6(0)
};

void mainb(){
EA = 1; //开总中断
ConfigUART(9600);//配置波特率为 9600
while (1){
while (PIN_RXD); //等待接收引脚出现低电平,即起始位
StartRXD(); //启动接收
while (!RxdEnd); //等待接收完成
StartTXD(RxdBuf+1); //接收到的数据+1 后,发送回去
while (!TxdEnd); //等待发送完成
}
return;
}

void SET_3v5v()
{
PIN_3v5v=1;
}
void RESET_3v5v()
{
PIN_3v5v=0;
}

void RST_SET(BitAction ResetState)
{

PIN_RST = ResetState;
}

void SET_CMVCC()
{
PIN_CMDVCC =1;
}
void RESET_CMVCC()
{
PIN_CMDVCC =0;
}

/* 串口配置函数,baud-通信波特率 */
void ConfigUART(unsigned int baud){
TMOD &= 0xF0; //清零 T0 的控制位
TMOD |= 0x02; //配置 T0 为模式 2
// TH0 = 256 - (11059200/6)/baud; //计算 T0 重载值
TH0 = 256 - (FOSC/12)/baud; //计算 T0 重载值

}
/* 启动串行接收 */
void StartRXD(){

while (PIN_RXD);
//printf("PIN_RXD2=0x%02X\r\n", (int)PIN_RXD);
TL0 = 256 - ((256-TH0)>>1); //接收启动时的 T0 定时为半个波特率周期
ET0 = 1; //使能 T0 中断
TR0 = 1; //启动 T0
RxdEnd = 0; //清零接收结束标志
RxdOrTxd = 0; //设置当前状态为接收

}
/* 启动串行发送,dat-待发送字节数据 */
void StartTXD(uint8_t dat){
TxdBuf = dat; //待发送数据保存到发送缓冲器
TL0 = TH0; //T0 计数初值为重载值
ET0 = 1; //使能 T0 中断
TR0 = 1; //启动 T0
PIN_TXD = 0; //发送起始位
TxdEnd = 0; //清零发送结束标志
RxdOrTxd = 1; //设置当前状态为发送
}

uint16_t USART_ReceiveData(USART_TypeDef* USARTx)
{
/* Check the parameters */
// assert_param(IS_USART_ALL_PERIPH(USARTx));

/* Receive Data */
#if 0
uint16_t tt= USARTx->SR ;
USARTx->SR = tt & (uint16_t)0x3df; //wuhh add ,remove later

return (uint16_t)(USARTx->DR & (uint16_t)0x01FF);
#endif
return (uint16_t) RxdBuf;

}
void USART_SendData(USART_TypeDef* USARTx, uint8_t Data)
{
StartTXD(Data);
}
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG)
{
FlagStatus bitstatus = RESET;
if (USART_FLAG== USART_FLAG_TC)
if (TxdEnd)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}

if (USART_FLAG== USART_FLAG_RXNE)
if (RxdEnd)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
static bit polarity = 0; //输出智能卡时钟极性

#if 1

/* T0 中断服务函数,处理串行发送和接收 */
void InterruptTimer0() interrupt 1{

static unsigned char cnt = 0; //位接收或发送计数
Test_CLK = !Test_CLK;

if (RxdOrTxd)
{ //串行发送处理
cnt++;
if (cnt <= 8){ //低位在先依次发送 8bit 数据位
PIN_TXD = TxdBuf & 0x01;
TxdBuf >>= 1;
}else
if (cnt == 9)
{ //发送停止位
PIN_TXD = 1;
}
else{ //发送结束
cnt = 0; //复位 bit 计数器
TR0 = 0; //关闭 T0
TxdEnd = 1; //置发送结束标志
}
}
else{ //串行接收处理
if (cnt == 0){ //处理起始位
if (!PIN_RXD){ //起始位为 0 时,清零接收缓冲器,准备接收数据位
RxdBuf = 0;
cnt++;
}
else{ //起始位不为 0 时,中止接收
TR0 = 0; //关闭 T0
}
}else if (cnt <= 8){ //处理 8 位数据位
RxdBuf >>= 1; //低位在先,所以将之前接收的位向右移
//接收脚为 1 时,缓冲器最高位置 1,
//而为 0 时不处理即仍保持移位后的 0
if (PIN_RXD){
RxdBuf |= 0x80;
}
cnt++;
}else{ //停止位处理
cnt = 0; //复位 bit 计数器
TR0 = 0; //关闭 T0
if (PIN_RXD){ //停止位为 1 时,方能认为数据有效
RxdEnd = 1; //置接收结束标志
}
}
}
}

#else
/* T0 中断服务函数,处理串行发送和接收 */

void InterruptTimer0() interrupt 1{

static unsigned char cnt = 0; //位接收或发送计数
//test_IO();
#if 0
PIN_TXD = !PIN_TXD;
#else

if (RxdOrTxd){ //串行发送处理
cnt++;
if (cnt <= 8){ //低位在先依次发送 8bit 数据位
PIN_TXD = TxdBuf & 0x01;
TxdBuf >>= 1;
}else if (cnt == 9){ //奇偶位
PIN_TXD=ParityTable256[TxdBuf];
}else if (cnt == 10){ //发送停止位1 智能卡协议共两个停止位
PIN_TXD = 1;
}else if (cnt == 11){ //发送停止位2
PIN_TXD = 1;
}else{ //发送结束
cnt = 0; //复位 bit 计数器
TR0 = 0; //关闭 T0
TxdEnd = 1; //置发送结束标志
}
}else{ //串行接收处理
if (cnt == 0){ //处理起始位
if (!PIN_RXD){ //起始位为 0 时,清零接收缓冲器,准备接收数据位
RxdBuf = 0;
cnt++;
//printf("InterruptTimer 0\n");
} else{ //起始位不为 0 时,中止接收
TR0 = 0; //关闭 T0
printf("InterruptTimer close\n");
}
}
else if (cnt <= 8){ //处理 8 位数据位
RxdBuf >>= 1; //低位在先,所以将之前接收的位向右移
//接收脚为 1 时,缓冲器最高位置 1,
//而为 0 时不处理即仍保持移位后的 0
if (PIN_RXD){
RxdBuf |= 0x80;
}
printf("RxdBuf=0x%02X\r\n", (int)RxdBuf);
cnt++;
}else{ //停止位处理
cnt = 0; //复位 bit 计数器
TR0 = 0; //关闭 T0
if (PIN_RXD){ //停止位为 1 时,方能认为数据有效
RxdEnd = 1; //置接收结束标志
}
}
}
#endif
}
#endif

原文地址:https://www.cnblogs.com/wuhh123/p/11367595.html

时间: 2024-08-03 16:26:15

51单片机IO口模拟UART串口通信的相关文章

51单片机GPIO口模拟串口通信

51单片机GPIO口模拟串口通信 标签: bytetimer终端存储 2011-08-03 11:06 6387人阅读 评论(2) 收藏 举报 本文章已收录于: 分类: 深入C语言(20) 作者同类文章X 1 #include "reg52.h" 2 #include "intrins.h" 3 #include "math.h" 4 #include "stdio.h" 5 sbit BT_SND =P1^5; 6 sbit

串口屏(触摸屏)组态软件+多台51单片机MODBUS RTU多机串口通信程序源码

串口屏(触摸屏)组态软件+多台51单片机MODBUS RTU多机串口通信程序源码实现触摸屏(串口屏)与单片机的通讯,主要是解决通讯协议的问题.本文使用开放的Modbus通讯协议,以广州易显的HMImaker触摸屏作主机(Master),单片机作从机(Slaver).HMImaker触摸屏本身支持Modbus通讯协议,只要单片机按照Modbus协议进行收发数据,就可以进行通信了.触摸屏与单片机之间采用RS-485标准接口直接连接,与多台51单片机MODBUS RTU多机串口通信一.包括如下实例:二

stm32 普通IO口模拟串口通信

普通IO口模拟串口通信 串口通信协议 串口传输 默认 波特率9600 1起始位 1停止位 其他0 数据位是8位(注意图上的给错了). 传输时,从起始位开始,从一个数据的低位(LSB)开始发送,如图从左向右的顺序,对电平拉高或拉低,最后停止位时拉高. 波特率大小,改变延时时间即可.例如9600 波特率    根据公式 : 1/9600=0.000104s(大致) 也就是说每发送1bit延时104us (下面我用9600波特率来说,代码用的是19200) 串口发送       将电平拉低 延时104

奶爸业余单片机学习之:UART串口通信学习笔记(一)

UART串口通信,全名:异步串口通信 UART的四种工作模式:(0,1,2,3) 模式1:SM0 = 0; SM1 = 1;REN = 1  //由SCON(串行口控制寄存器)控制,可位寻址.10位异步收发(8位数据),波特率可变(由定时器1的溢出率控制) 模式1功能:以TXD为例,平时没数据时,TXD为高电平,需要发送数据时,先发送一个起始位0,然后发送八位数据位(一个字节),最后发送一位停止位1: REN位为允许串行接收位:REN = 1:允许串行口接收数据:REN = 0:禁止串行口接收数

【C51】UART串口通信

我们常需要单片机和其他模块进行通信,数据传输,常用的方式就是串口通信技术. 常用来 单片机<-->电脑,  单片机<-->单片机之间通信. 串行通信 versus 并行通信 并行传输:将字节的各个 bit 用多条传输线路同时发送出去.每个bit使用一条线路. 优点:速度相对快,控制简单. 缺点:控制线路多,耗费的硬件资源多. 串行传输:将一个字节的数据的各个 bit 在一条线路上 分时发送.一个字节8位,则至少需要分8次发送完. 优点:需要的线路少,成本低. 缺点:控制复杂,因为它

Win10 IoT C#开发 4 - UART 串口通信

原文:Win10 IoT C#开发 4 - UART 串口通信 Windows 10 IoT Core 是微软针对物联网市场的一个重要产品,既可以开发设备UI与用户交互式操作,又可以控制GPIO等接口,使得原来嵌入式繁琐的开发变得简单.通过Remote Debug功能可以进行断点追踪调试.C#语言本身也有很好的用户基础,相信Win10 IoT 不远的将来会火起来.上个月帮朋友解决了关于Win10 IoT 的一些技术问题,当前也有很多公司在尝试采用Win10 IoT进行开发,可能也会遇到这些问题,

嵌入式Linux裸机开发(七)——UART串口通信

嵌入式Linux裸机开发(七)--UART串口通信 一.UART串口通信简介 通用异步收发器简称UART,即UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER, 它用来传输串行数据.发送数据时, CPU 将并行数据写入UART,UAR按照一定的格式在一根电线上串 行发出:接收数据时, UART检测另一根电线的信号,将串行收集在缓冲区中, CPU 即可读取 UART 获得这些数据. 在 S5PV210中, UART提供了 4 对独立的异步串口I/O端口,

单片机IO口标准双向,推挽,高阻,开漏模式 ,LED感应亮灭实验【原创!】

单片机IO口标准双向,推挽,高阻,开漏模式 ,LED感应亮灭实验  十一长假在家快烂了,没事儿做,DIY技术搞起来!  [关于12C增强型单片机I/O口的工作类型实验研究] 文中动画视频效果下载: STC单片机头文件[51CTO-->单片机-->LED感应亮灭实验] 下载链接 链接:http://pan.baidu.com/s/1pJKK4w7   密码:a0re  1.用强推模式,点亮一个LED  /* 工程创建MCU选取,Atmel 89C55 单片机:STC12C4052AD 晶振:无要

把74HC595驱动程序翻译成类似单片机IO口直接驱动的方式

/**原理图以及各74HC595的IO口功能见上一例****/ #include "REG52.H"#define const_time_level 200 void initial_myself();void initial_peripheral();void delay_short(unsigned int uiDelayShort);void delay_long(unsigned int uiDelayLong);void led_flicker();void hc595_dr