POJ 1269 Intersecting Lines (判断直线位置关系)

题目链接:POJ 1269

Problem Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.

Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

Solution

题意

\(n\) 组样例。每组样例给定两条直线,判断直线是平行,重合还是相交。若相交求交点。

题解

叉积

  • 判断共线:

若 \(\boldsymbol{ab}\) 与 \(\boldsymbol{cd}\) 共线,则 \(\boldsymbol{ab} \times \boldsymbol{cd} = 0\)。

  • 判断重合:

若 \(\boldsymbol{ab}\) 与 \(\boldsymbol{cd}\) 重合,则 \(\boldsymbol{bc} \times \boldsymbol{ad} = 0\)。

  • 判断平行:

共线且不重合。

  • 求交点:

首先要满足相交。

如上图,求 \(\boldsymbol{AB}\) 与 \(\boldsymbol{CD}\) 的交点 \(E\)。

\[\frac{AE}{BE} = \frac{S_{\triangle ACD}}{S_{\triangle BCD}} = \frac{|\boldsymbol{CA} \times \boldsymbol{CD}|}{|\boldsymbol{CB} \times \boldsymbol{CD}|}\]

\[\boldsymbol{AE} = \frac{|\boldsymbol{AE}|}{|\boldsymbol{AB}|} \boldsymbol{AB} = \frac{|\boldsymbol{AE}|}{|\boldsymbol{AE}| + |\boldsymbol{EB}|} \boldsymbol{AB} = \frac{S_{\triangle ACD}}{S_{\triangle ACD} + S_{\triangle BCD}} \boldsymbol{AB}\]

设原点为 \(O\),则

\[\boldsymbol{OE} = \boldsymbol{OA} + \boldsymbol{AE}\]

\(\boldsymbol{OE}\) 即为点 \(E\) 的坐标。

Code

#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e5 + 10;

inline int dcmp(db x) {
    if(fabs(x) < eps) return 0;
    return x > 0? 1: -1;
}

class Point {
public:
    double x, y;
    Point(double x = 0, double y = 0) : x(x), y(y) {}
    void input() {
        scanf("%lf%lf", &x, &y);
    }
    bool operator<(const Point &a) const {
        return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
    }
    bool operator==(const Point &a) const {
        return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
    }
    db dis2(const Point a) {
        return pow(x - a.x, 2) + pow(y - a.y, 2);
    }
    db dis(const Point a) {
        return sqrt(dis2(a));
    }

    db dis2() {
        return x * x + y * y;
    }
    db dis() {
        return sqrt(dis2());
    }
    Point operator+(const Point a) {
        return Point(x + a.x, y + a.y);
    }
    Point operator-(const Point a) {
        return Point(x - a.x, y - a.y);
    }
    Point operator*(double p) {
        return Point(x * p, y * p);
    }
    Point operator/(double p) {
        return Point(x / p, y / p);
    }
    db dot(const Point a) {
        return x * a.x + y * a.y;
    }
    db cross(const Point a) {
        return x * a.y - y * a.x;
    }
};
typedef Point Vector;

class Line {
public:
    Point s, e;
    Line() {}
    Line(Point s, Point e) : s(s), e(e) {}
    void input() {
        scanf("%lf%lf%lf%lf", &s.x, &s.y, &e.x, &e.y);
    }
    int toLeftTest(Point p) {
        if((e - s).cross(p - s) > 0) return 1;
        else if((e - s).cross(p - s) < 0) return -1;
        return 0;
    }
    // 共线
    bool collinear(Line l) {
        if(dcmp((e - s).cross(l.e - l.s)) == 0) {
            return 1;
        }
        return 0;
    }
    // 同线
    bool same(Line l) {
        if(dcmp((l.s - e).cross(l.e - s)) == 0) {
            return 1;
        }
        return 0;
    }
    // 平行
    bool parallel(Line l) {
        return collinear(l) && (!same(l));
    }
    // 直线与直线交点
    Point crosspoint(Line l) {
        double a1 = (l.e - l.s).cross(s - l.s);
        double a2 = (l.e - l.s).cross(e - l.s);
        Point ans = s + (e - s) * (-a1) / (a2 - a1);
        if(dcmp(ans.x) == 0) ans.x = 0;
        if(dcmp(ans.y) == 0) ans.y = 0;
        return ans;
    }

    // 直线与直线位置关系 0-重合 1-平行 2-相交
    int linecrossline (Line l) {
        if(dcmp((e - s).cross(l.e - l.s)) == 0) {
            if(dcmp((l.s - e).cross(l.e - s)) == 0) {
                return 0;
            }
            return 1;
        }
        return 2;
    }
};

Line l1, l2;

int main() {
    int T;
    scanf("%d", &T);
    printf("INTERSECTING LINES OUTPUT\n");
    while(T--) {
        l1.input();
        l2.input();
        if(l1.linecrossline(l2) == 0) {
            printf("LINE\n");
        } else if(l1.linecrossline(l2) == 1) {
            printf("NONE\n");
        } else {
            Point ans = l1.crosspoint(l2);
            printf("POINT %.2lf %.2lf\n", ans.x, ans.y);
        }
    }
    printf("END OF OUTPUT\n");
    return 0;
}

原文地址:https://www.cnblogs.com/wulitaotao/p/11419300.html

时间: 2024-10-15 05:21:26

POJ 1269 Intersecting Lines (判断直线位置关系)的相关文章

POJ 1269 Intersecting Lines(判断直线相交)

题目地址:POJ 1269 直接套模板就可以了...实在不想自己写模板了...写的又臭又长....不过这题需要注意的是要先判断是否有直线垂直X轴的情况. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctype.h>

poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)

Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12421   Accepted: 5548 Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three

POJ1269_Intersecting Lines(几何/叉积判断直线位置关系)

解题报告 题目传送门 题意: 判断直线的位置关系(平行,重合,相交) 思路: 两直线可以用叉积来判断位置关系. AB直线和CD直线 平行的话端点C和端点D会在直线AB的同一侧. 重合的话在直线AB上. 剩下就是相交. 求两直线交点可以用面积比和边长比来求. 看下面的图就知道了,推导就比较容易了 #include <iostream> #include <cstring> #include <cstdio> #define eps 1e-6 #define zero(x)

POJ 1269 Intersecting Lines(线段相交,水题)

Intersecting Lines 大意:给你两条直线的坐标,判断两条直线是否共线.平行.相交,若相交,求出交点. 思路:线段相交判断.求交点的水题,没什么好说的. struct Point{ double x, y; } ; struct Line{ Point a, b; } A, B; double xmult(Point p1, Point p2, Point p) { return (p1.x-p.x)*(p2.y-p.y)-(p1.y-p.y)*(p2.x-p.x); } bool

poj 1269 Intersecting Lines(判相交交点与平行)

http://poj.org/problem?id=1269 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10379   Accepted: 4651 Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in

判断两条直线的位置关系 POJ 1269 Intersecting Lines

两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, p2, p3, p4,直线L1,L2分别穿过前两个和后两个点.来判断直线L1和L2的关系 这三种关系一个一个来看: 1. 共线. 如果两条直线共线的话,那么另外一条直线上的点一定在这一条直线上.所以p3在p1p2上,所以用get_direction(p1, p2, p3)来判断p3相对于p1p2的关

简单几何(直线位置) POJ 1269 Intersecting Lines

题目传送门 题意:判断两条直线的位置关系,共线或平行或相交 分析:先判断平行还是共线,最后就是相交.平行用叉积判断向量,共线的话也用叉积判断点,相交求交点 /************************************************ * Author :Running_Time * Created Time :2015/10/24 星期六 09:08:55 * File Name :POJ_1269.cpp *********************************

POJ 1269 Intersecting Lines【判断直线相交】

题意:给两条直线,判断相交,重合或者平行 思路:判断重合可以用叉积,平行用斜率,其他情况即为相交. 求交点: 这里也用到叉积的原理.假设交点为p0(x0,y0).则有: (p1-p0)X(p2-p0)=0 (p3-p0)X(p2-p0)=0 展开后即是 (y1-y2)x0+(x2-x1)y0+x1y2-x2y1=0 (y3-y4)x0+(x4-x3)y0+x3y4-x4y3=0 将x0,y0作为变量求解二元一次方程组. 假设有二元一次方程组 a1x+b1y+c1=0; a2x+b2y+c2=0

POJ 1269 Intersecting Lines 直线相交判断

D - Intersecting Lines Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1269 Appoint description:  System Crawler  (2016-05-08) Description We all know that a pair of distinct points on a plane d