multiprocessing模块的多进程与进程池

multiprocessing模块的Process方法

可以利用Proces方法在一个主进程中创建几个子进程

from multiprocessing import Process
import time
def f1(name):
    time.sleep(2)
    print(‘Hell %s‘ % name)
def f2(age):
    time.sleep(2)
    print(‘Hell %s‘ % age)
if __name__ == "__main__":
    p = Process(target=f1,args=(‘ayu‘,))
    p.daemon = True #将daemon设置为True,则主进程不等待子进程,主进程结束,则整个进程结束
    p.start()
    p = Process(target=f2,args=(‘22‘,))
    p.daemon = True
    p.start()
    print(‘All Done‘) #子进程结束后会输出

###进程间的内存是不共享的

from multiprocessing import Process
li = []
def ad(i):
    li.append(i)
    print(li)
if __name__ == "__main__":
    for i in range(10):
        p = Process(target=ad,args=(i))
        p.start()
/Users/wuxiangyu-pc/.conda/envs/test_all/bin/python /Users/wuxiangyu-pc/Documents/spider/test_all/fork_process.py
[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

说明各个进程间,内存是不能共享的
但是线程之间内存是可以共享的,所以可以使用threading操作

from threading import Thread
li = []
def ad(i):
    li.append(i)
    print(li)
if __name__ == "__main__":
    for i in range(10):
        p = Thread(target=ad,args=(i,))
        p.start()
/Users/wuxiangyu-pc/.conda/envs/test_all/bin/python /Users/wuxiangyu-pc/Documents/spider/test_all/fork_process.py
[0]
[0, 1]
[0, 1, 2]
[0, 1, 2, 3]
[0, 1, 2, 3, 4]
[0, 1, 2, 3, 4, 5]
[0, 1, 2, 3, 4, 5, 6]
[0, 1, 2, 3, 4, 5, 6, 7]
[0, 1, 2, 3, 4, 5, 6, 7, 8]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Process finished with exit code 0

要实现进程间的内存共享,可以使用Manager方法

from multiprocessing import Process,Manager
def ad(i,li):
    li.append(i)
    print(li)
if __name__ == "__main__":
    manager = Manager()
    li = manager.li()
    for i in range(10):
        p = Process(target=ad,args=(i,li))
        p.start()
        p.join()
/Users/wuxiangyu-pc/.conda/envs/test_all/bin/python /Users/wuxiangyu-pc/Documents/spider/test_all/fork_process.py
[0]
[0, 1]
[0, 1, 2]
[0, 1, 2, 3]
[0, 1, 2, 3, 4]
[0, 1, 2, 3, 4, 5]
[0, 1, 2, 3, 4, 5, 6]
[0, 1, 2, 3, 4, 5, 6, 7]
[0, 1, 2, 3, 4, 5, 6, 7, 8]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Process finished with exit code 0

##multiprocessing模块的Pool进程池
Pool.apply方法可以实现多个子进程排序依次执行

from multiprocessing import Pool
import time
def f0(name):
    time.sleep(2)
    print(‘i am %s‘ % name)
if __name__ == "__main__":
    p = Pool(5)
    for i in range(5):
        p.apply(func=f0,args=(i,))
        print(‘Hello World‘)
    p.close()
    p.join()

Pool.apply_async实现多线程异步,比apply多一个回调函数

from multiprocessing import Pool
def f1(num):
    i = num + 20
    return i
def f1(i):
    print(‘i am %s‘ % i)
if __name__ == "__main__":
    p = Pool(5)
    for i in range(5):
        p.apply_async(func=f1,args=(i,),callback=f1)
    p.close()
    p.join()

原文地址:http://blog.51cto.com/dorebmoon/2333602

时间: 2024-10-29 21:45:08

multiprocessing模块的多进程与进程池的相关文章

使用multiprocessing模块创建多进程

1 # 使用multiprocessing模块创建多进程 2 # multiprcessing模块提供了一个Process类来描述一个进程对象. 3 # 创建子进程时,只需要传入一个执行函数和函数的参数,即可完成一个process实例的创建 4 # 用start()方法启动进程 5 # 用join()方法实现进程间的同步. 6 import os 7 from multiprocessing import Process 8 # os模块中的getpid()方法获取当前进程的id 9 # get

使用concurrent.futures模块并发,实现进程池、线程池

一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的异步多线程/多进程代码.从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来创建线程池和进程池的代码.实现了对thread

Python 多进程和进程池

一,前言 进程:是程序,资源集合,进程控制块组成,是最小的资源单位 特点:就对Python而言,可以实现真正的并行效果 缺点:进程切换很容易消耗cpu资源,进程之间的通信相对线程来说比较麻烦 线程:是进程中最小的执行单位. 特点无法利用多核,无法实现真正意义上是并行效果. 优点:对于IO密集型的操作可以很好利用IO阻塞的时间 二,多进程 2.1 multiprocessing模块介绍 在上一节多线程中讲到,由于GIL的原因,多线程无法利用多核优势,如果想要充分地使用多核CPU的资源,在pytho

38. Python 多进程Manager 进程池

强大的Manager模块 上一节实现的数据共享的方式只有两种结构Value和Array. Python中提供了强大的Manager模块,专门用来做数据共享. 他支持的类型非常多,包括:Value.Araay.list.dict.Queue.Lock等. 以下例子: import multiprocessing def worker(d,l):     l += range(11, 16)     for i in xrange(1, 6):         key = "key{0}"

python3多进程和进程池

#一个程序运行起来之后,代码+用到的资源称之为进程,它是操作系统分配资源的基本单位,不仅可以通过线程完成多任务,进程也是可以的#进程之间是相互独立的#cpu密集的时候适合用多进程 #多进程并发 import multiprocessing from multiprocessing import Pool import time def test1(): for i in range(10): time.sleep(1) print('test', i) def test2(): for i in

多进程和进程池

from multiprocessing import Process import os # 子进程要执行的代码 def run_proc(name): print 'Run child process %s (%s)...' % (name, os.getpid()) if __name__=='__main__': print 'Parent process %s.' % os.getpid() p = Process(target=run_proc, args=('test',)) pr

python多进程操作-进程池

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间.当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候就到了. Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求:但如果池中的进程数已经达到规定

多进程,进程池。

1.多进程的调用 1.1 multiprocessing调用 1 from multiprocessing import Process 2 import time 3 def f(name): 4 time.sleep(1) 5 print('hello', name,time.ctime()) 6 7 if __name__ == '__main__': 8 p_list=[] 9 for i in range(3): 10 p = Process(target=f, args=('alvi

第36篇 多进程的数据共享,进程池的回调函数,线程 什么是GIL锁,Threading模块记

内容概览: 进程 数据共享 进程池--回调函数 线程 线程的基础理论 什么是线程? 线程与进程的关系 GIL锁 线程的开启: Threading模块1,用多进程开启socket创建聊天 server端写了input函数会报错?因为服务器是高速运行的,自动化的为来访问的客户端提供服务, 不可能停下来等待管理员的输入,然后发送给客户.这就失去了自动化的意义. 2,进程池Pool()方法创建的进程,map()方法是否有返回值? p.map()得到的是迭代对象 import time from mult