AtCoder Grand Contest 002 (AGC002) F - Leftmost Ball 动态规划 排列组合

原文链接https://www.cnblogs.com/zhouzhendong/p/AGC002F.html

题目传送门 - AGC002F

题意

  给定 $n,k$ ,表示有 $n\times k$ 个球,其中,颜色为 $1,2,\cdots, n$ 的球各有 $k$ 个。

  将这些球任意排列成一排,对于每一种颜色,将这种颜色的球的最左边的那个涂成颜色 $0$ 。

  问最终可以得到多少种不同的排列。

  $1\leq n,k\leq 2000,{\rm Mod} = 10^9 +7$

题解

  首先当 $k=1$ 时答案显然是 $1$ ,先判掉。

  然后我们求最终序列中,颜色为 $1,\cdots ,n $ 的球的最左出现位置递增 的方案总数。这样最后只需要把答案乘上 $n!$ 就可以了。

  考虑如何求这个东西。我们考虑动态规划,假装我们一个一个地把颜色涂到序列上。

  令 $dp[i][j]$ 表示已经涂完前 $i$ 种颜色,并已经涂了 $j$ 个颜色 $0$ 的方案总数。

  由于每种颜色的第一个位置都会被涂成 $0$ ,所以当前涂了颜色 $1,\cdots ,i$ 的格子总数为 $(k-1)\times i$ ,再加上被涂成 $0$ 的格子,现在总共已经确定了 $(k-1)\times i+j$ 个格子。而且,显然有 $i\leq j$ 。于是我们来考虑 DP 转移。

  考虑 $dp[i][j]$ 对于其他 DP 值的贡献:

    1. 下一个格子选择涂颜色 $0$ : $dp[i][j+1]+=dp[i][j]$

    2. 让下一个格子成为最终序列中颜色 $i+1$ 第一次出现的地方。显然,我们又占用了 $1$ 个位置;而且除掉变成 $0$ 的和第一个,颜色 $i+1$ 还有 $k-2$ 个没有被填入。相当于在 $k(n-i)-(j-i)-1$ 个格子里面选择 $k-2$ 个,于是转移就是 : $dp[i+1][j]+=\binom{k(n-i)-(j-i)-1}{k-2} dp[i][j]$

  然后就 OK 啦。到这里,您就可以体会到为什么一开始我们要把 $k=1$ 的判掉了吧。

代码

#include <bits/stdc++.h>
using namespace std;
const int N=2005,mod=1e9+7;
int n,k;
int Fac[N*N],Inv[N*N],dp[N][N];
int Pow(int x,int y){
	int ans=1;
	for (;y;y>>=1,x=1LL*x*x%mod)
		if (y&1)
			ans=1LL*ans*x%mod;
	return ans;
}
int C(int n,int m){
	if (m<0||m>n)
		return 0;
	return 1LL*Fac[n]*Inv[m]%mod*Inv[n-m]%mod;
}
int main(){
	scanf("%d%d",&n,&k);
	if (k==1){
		puts("1");
		return 0;
	}
	for (int i=Fac[0]=1;i<=n*k;i++)
		Fac[i]=1LL*Fac[i-1]*i%mod;
	Inv[n*k]=Pow(Fac[n*k],mod-2);
	for (int i=n*k-1;i>=0;i--)
		Inv[i]=1LL*Inv[i+1]*(i+1)%mod;
	dp[0][0]=1;
	for (int i=0;i<=n;i++)
		for (int j=i;j<=n;j++){
			dp[i][j+1]=(dp[i][j+1]+dp[i][j])%mod;
			dp[i+1][j]=(1LL*dp[i][j]*C(k*(n-i)-(j-i)-1,k-2)+dp[i+1][j])%mod;
		}
	printf("%lld",1LL*dp[n][n]*Fac[n]%mod);
	return 0;
}

  

原文地址:https://www.cnblogs.com/zhouzhendong/p/AGC002F.html

时间: 2024-10-08 17:05:28

AtCoder Grand Contest 002 (AGC002) F - Leftmost Ball 动态规划 排列组合的相关文章

AtCoder Grand Contest 031 (AGC031) F - Permutation and Minimum 动态规划

原文链接www.cnblogs.com/zhouzhendong/p/AGC031F.html 草率题解 对于每两个相邻位置,把他们拿出来. 如果这两个相邻位置都有确定的值,那么不管他. 然后把所有的这些数拿出来,分为两类,一类是没有被填入的,一类是被填入的. 然后大力DP即可.由于没有被填入的可以任意排列,所以最后还要乘上一个阶乘. 代码 #include <bits/stdc++.h> #define clr(x) memset(x,0,sizeof x) #define For(i,a,

Atcoder Grand Contest 026 (AGC026) F - Manju Game 博弈,动态规划

原文链接www.cnblogs.com/zhouzhendong/AGC026F.html 前言 太久没有发博客了,前来水一发. 题解 不妨设先手是 A,后手是 B.定义 \(i\) 为奇数时,\(a_i\) 为"奇数位上的数":\(i\) 为偶数时, \(a_i\) 为"偶数位上的数".定义左.右两端的数分别表示 \(a_1\) 和 \(a_n\). 考虑第一步: 首先,如果 A 取了左右某一个端点,那么他必然能取走和他取的点奇偶性相同的所有点. 然后,我们考虑

AtCoder Grand Contest 020 (AGC020) E - Encoding Subsets 动态规划

原文链接www.cnblogs.com/zhouzhendong/p/AGC020E.html 前言 真 \(\cdot\) 信仰型动态规划 题解 我们可以采用信仰型动态规划解决此题. 设 \(dp[S]\) 表示 S 这个字符串的所有子集可以被编码成多少种. 那么分两种情况转移: 不编码,答案是子集总数. 考虑枚举最左边的一处编码,递归DP. 时间复杂度 \(O(信仰)\) . 时间复杂度证明?详见官方题解.反正我没去看. 代码 #include <bits/stdc++.h> #defin

AtCoder Grand Contest 025 Problem D

www.cnblogs.com/shaokele/ AtCoder Grand Contest 025 Problem D Time Limit: 2 Sec Memory Limit: 1024 MB Description Takahashi is doing a research on sets of points in a plane. Takahashi thinks a set \(S\) of points in a coordinate plane is a good set w

AtCoder Grand Contest 024 Problem E(动态规划)

www.cnblogs.com/shaokele/ AtCoder Grand Contest 024 Problem E Time Limit: 2 Sec Memory Limit: 1024 MB Description Find the number of the possible tuples of sequences (\(A_0,A_1,-,A_N\)) that satisfy all of the following conditions, modulo \(M\): ? Fo

AtCoder Grand Contest 011

AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\(n\)个乘客到达了飞机场,现在他们都要坐车离开机场.第\(i\)个乘客到达的时间是\(T_i\),一个乘客必须在\([T_i,T_i+k]\)时刻做到车,否则他会生气.一辆车最多可以坐\(C\)个人.问最少安排几辆车可以让所有人都不生气. 题解 从前往后贪心即可. #include<iostream

AtCoder Grand Contest 014

AtCoder Grand Contest 014 A - Cookie Exchanges 有三个人,分别有\(A,B,C\)块饼干,每次每个人都会把自己的饼干分成相等的两份然后给其他两个人.当其中有一个人的饼干数量是奇数的时候停止,求会进行几次这样子的操作,或者会永远进行下去. 首先无解的情况一定是三个数都是相等的偶数. 否则直接暴力模拟就行了.(盲猜答案不会很大) 证明一下答案的范围:不妨令\(A\le B\le C\),那么最大值和最小值之间的差就是\(C-A\),那么执行完一次操作之后

AtCoder Grand Contest 016

AtCoder Grand Contest 016 A - Shrinking 你可以进行一个串的变换,把一个长度为\(n\)的串\(S\)可以变成长度为\(n-1\)的串\(T\),其中\(T_i\)要么是\(S_i\)要么是\(S_{i+1}\). 现在问你最少进行多少次这个操作,能够使最终得到的\(T\)只由一个字符构成. \(|S|\le 100\) 首先枚举最终字符是哪一个.那么首先在\(S\)末尾加上一个这个字符,那么这个最小步数等于对于所有位置而言,离它最近的枚举的字符到这个位置的

Atcoder Grand Contest 018 E - Sightseeing Plan

Atcoder Grand Contest 018 E - Sightseeing Plan 枚举从第二个矩形的 \((x_1,y_1)\) 进入,\((x_2,y_2)\) 出来,那么中间可以选的点的数量是 \(x_2+y_2-x_1-x_2+1\) ,也就是说对于每一条合法路线,从 \((x_1,y_1)\) 进入的贡献为 \(-x_1-x_2\) ,从 \((x_2,y_2)\) 出来的贡献为 \(x_2+y_2+1\) ,枚举一下第二个矩形边界上的点,我们只需要分别计算某个点到第一个矩形