算法第三章上机实验报告

1.实践题目

7-2 最大子段和

2.问题描述

给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时,定义子段和为0。

要求算法的时间复杂度为O(n)。

3.算法描述

首先将数据保存到一个数组内,然后建立一个循环来遍历这些数组,定义一个sum来保存和,定义一个max来保存最大值,对于每次遍历的结果x,如果sum为负,则将sum的值更改为x,并与max做对比,若比max大则将sum的值赋予max,否则不做处理;如果sum为正数,则sum加上x的值并与max做对比,如果比max大则sum的值赋予max,否则不做处理。最后的max即我们所要求的值。

4.算法时间及空间复杂度分析

时间复杂度:只有一次遍历一维数组,为O(n)

空间复杂度:只需要一维数组的储存空间O(n)

5.心得体会(对本次实践收获及疑惑进行总结)

要注意如果全部都为负数的情况。

原文地址:https://www.cnblogs.com/zengjing123456/p/9941756.html

时间: 2024-11-10 18:24:17

算法第三章上机实验报告的相关文章

算法第三章上机实验

算法第三章上机实验 数字三角形 给定一个由 n行数字组成的数字三角形如下图所示.试设计一个算法,计算出从三角形 的顶至底的一条路径(每一步可沿左斜线向下或右斜线向下),使该路径经过的数字总和最大. #include <iostream> using namespace std; int maxsum(int a[100][100],int n){ int b[100][100]={0}; for(int i=n-1;i>=0;i--){ for(int j=i;j>=0;j--){

揭露动态规划真面目——算法第三章上机实践报告

算法第三章上机实践报告 一.        实践题目 7-2 最大子段和 (40 分) 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值.当所给的整数均为负数时,定义子段和为0. 要求算法的时间复杂度为O(n). 输入格式: 输入有两行: 第一行是n值(1<=n<=10000): 第二行是n个整数. 输出格式: 输出最大子段和. 输入样例: 在这里给出一组输入.例如: 6 -2 11 -4 13 -5

算法第三章上机实践报告——动态规划

1.实践题目 7-1 数字三角形 (30 分) 给定一个由 n行数字组成的数字三角形如下图所示.试设计一个算法,计算出从三角形 的顶至底的一条路径(每一步可沿左斜线向下或右斜线向下),使该路径经过的数字总和最大. 输入格式: 输入有n+1行: 第 1 行是数字三角形的行数 n,1<=n<=100. 接下来 n行是数字三角形各行中的数字.所有数字在0..99 之间. 输出格式: 输出最大路径的值. 输入样例: 在这里给出一组输入.例如: 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6

算法第三章上机实践报告

实践题目 7-1 数字三角形 (30 分) 给定一个由 n行数字组成的数字三角形如下图所示.试设计一个算法,计算出从三角形 的顶至底的一条路径(每一步可沿左斜线向下或右斜线向下),使该路径经过的数字总和最大. 输入格式: 输入有n+1行: 第 1 行是数字三角形的行数 n,1<=n<=100. 接下来 n行是数字三角形各行中的数字.所有数字在0..99 之间. 输出格式: 输出最大路径的值. 输入样例: 在这里给出一组输入.例如: 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5

算法第四章上机实验报告

题目:删数问题 问题描述:输入一个正整数a和一个正整数k(k≤n ),在n位正整数a中去掉其中任意k个数字后,剩下的数字按原次序排列组成一个新 的正整数. 算法描述:从前往后进行比较,删掉升序的最后那个数,若一直保持升序,则删掉最后一位数,重复k次,删掉k个数 时间复杂度:该算法主要进行了k次的for循环,每次循环的时间复杂度是o(n),故其时间复杂度为o(n) 空间复杂度:该算法不需要额外的数组或变量来存放数据,故其空间复杂度为o(1) 心得体会:在做题的时候还要再细心一点,特别对于一些小细节

算法第三章上机实践报告之数字三角形

1.实践题目 7-1 数字三角形 (30 分) 给定一个由 n行数字组成的数字三角形如下图所示.试设计一个算法,计算出从三角形 的顶至底的一条路径(每一步可沿左斜线向下或右斜线向下),使该路径经过的数字总和最大. 输入格式: 输入有n+1行: 第 1 行是数字三角形的行数 n,1<=n<=100. 接下来 n行是数字三角形各行中的数字.所有数字在0..99 之间. 输出格式: 输出最大路径的值. 输入样例: 在这里给出一组输入.例如: 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6

贪心算法?我全都要!——算法第四章上机实践报告

算法第四章上机实践报告 一.        实践题目 4-1 程序存储问题 (90 分) 设有n 个程序{1,2,…, n }要存放在长度为L的磁带上.程序i存放在磁带上的长度是 li,1≤i≤n. 程序存储问题要求确定这n 个程序在磁带上的一个存储方案, 使得能够在磁带上存储尽可能多的程序. 对于给定的n个程序存放在磁带上的长度,计算磁带上最多可以存储的程序数. 输入格式: 第一行是2 个正整数,分别表示文件个数n和磁带的长度L.接下来的1行中,有n个正整数,表示程序存放在磁带上的长度. 输出

『嗨威说』算法设计与分析 - PTA 数字三角形 / 最大子段和 / 编辑距离问题(第三章上机实践报告)

本文索引目录: 一.PTA实验报告题1 : 数字三角形 1.1 实践题目 1.2 问题描述 1.3 算法描述 1.4 算法时间及空间复杂度分析 二.PTA实验报告题2 : 最大子段和 2.1 实践题目 2.2 问题描述 2.3 算法描述 2.4 算法时间及空间复杂度分析 三.PTA实验报告题3 : 编辑距离问题 3.1 实践题目 3.2 问题描述 3.3 算法描述 3.4 算法时间及空间复杂度分析 四.实验心得体会(实践收获及疑惑) 一.PTA实验报告题1 : 数字三角形 1.1 实践题目: 1

算法第二章上机实验报告

1.实践题目 7-1 二分查找 (20 分) 输入n值(1<=n<=1000).n个非降序排列的整数以及要查找的数x,使用二分查找算法查找x,输出x所在的下标(0~n-1)及比较次数.若x不存在,输出-1和比较次数. 输入格式: 输入共三行:第一行是n值:第二行是n个整数:第三行是x值. 输出格式: 输出x所在的下标(0~n-1)及比较次数.若x不存在,输出-1和比较次数. 输入样例: 4 1 2 3 4 1 输出样例: 0 2 2.问题描述 本道题是让我们输入非降序排列的整数,也就是说是排好