[bzoj1430]小猴打架_prufer序列

小猴打架 bzoj-1430

题目大意:题目链接。

注释:略。



想法

我们发现打架的情况就是一棵树。

我们只需要把确定树的形态然后乘以$(n-1)!$表示生成这棵树时边的顺序。

一共$n$个节点我们发现数的形态一共有$n^{n-2}$种。

所以答案就是$n^{n-2}\cdot (n-1)!$。

Code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 9999991
using namespace std;
typedef long long ll;
ll qpow(ll x,ll y)
{
	ll ans=1; while(y)
	{
		if(y&1) (ans*=x)%=mod;
		y>>=1;
		(x*=x)%=mod;
	}
	return ans;
}
int main()
{
	ll n; cin >> n ;
	ll ans=1; for(int i=1;i<=n-1;i++) (ans*=i)%=mod;
	printf("%lld\n",qpow(n,n-2)*ans%mod);
	return 0;
}

小结:$prufer$序列还是很好理解的。

原文地址:https://www.cnblogs.com/ShuraK/p/10198806.html

时间: 2024-10-10 22:22:28

[bzoj1430]小猴打架_prufer序列的相关文章

【prufer编码】BZOJ1430 小猴打架

Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程. Solution 有一种神奇的prufer码,这种码和一棵树一一对应. 由树转码

bzoj1430 小猴打架

Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程. Input 一个整数N. Output 一行,方案数mod 9999991. S

[BZOJ1430] 小猴打架 (数学)

Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程. Input 一个整数N. Output 一行,方案数mod 9999991. S

bzoj 1430: 小猴打架

1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 634  Solved: 461[Submit][Status][Discuss] Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,

1430: 小猴打架

1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 335  Solved: 241[Submit][Status] Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,

【BZOJ 1430】 1430: 小猴打架 (Prufer数列)

1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 625  Solved: 452 Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-

「Luogu4430」小猴打架

「Luogu4430」小猴打架 题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程. 输入输出格式 输入格式: 一个整数N. 输出格式: 一行,方案

【BZOJ】【1430】小猴打架

排列组合 蛮逗的…… 这题题干描述的就一股浓浓的Kruskal的气息……很容易就想到是求一个n个点的完全图的生成树个数,然后由于有序,再乘一个n-1的排列数(n-1条边的全排列)即(n-1)! 但是我一下就卡在了 完全图的生成树个数这个地方……怎么也想不出来……后来看了题解,原来这是一个奇葩的结论:[n^(n-2)] 好吧剩下的就是水了……完全无压力…… Cayley公式 1 /***********************************************************

洛谷——P1125 笨小猴

https://www.luogu.org/problem/show?pid=1125 题目描述 笨小猴的词汇量很小,所以每次做英语选择题的时候都很头疼.但是他找到了一种方法,经试验证明,用这种方法去选择选项的时候选对的几率非常大! 这种方法的具体描述如下:假设maxn是单词中出现次数最多的字母的出现次数,minn是单词中出现次数最少的字母的出现次数,如果maxn-minn是一个质数,那么笨小猴就认为这是个Lucky Word,这样的单词很可能就是正确的答案. 输入输出格式 输入格式: 输入文件