MNIST手写数字数据集

下载python源代码之后,使用:

import input_data
mnist = input_data.read_data_sets(‘MNIST_data/‘,one_hot=True)

下载下来的数据集分成:

mnist.train.images 60000*784

mnist.train.labels 60000*10

mnist.test.images 60000*784

mnist.test.labels 60000*10

原文地址:https://www.cnblogs.com/pacino12134/p/10030354.html

时间: 2024-10-01 14:45:58

MNIST手写数字数据集的相关文章

基于MNIST手写数字数据集的数字识别小程序

30行代码奉上!(MNIST手写数字的识别,识别率大约在91%,简单尝试的一个程序,小玩具而已) 1 import tensorflow.examples.tutorials.mnist.input_data as input_data 2 import tensorflow as tf 3 mnist = input_data.read_data_sets('/temp/', one_hot=True) 4 5 #设置 6 x = tf.placeholder(tf.float32,[None

Tensorflow实践 mnist手写数字识别

minst数据集                                         tensorflow的文档中就自带了mnist手写数字识别的例子,是一个很经典也比较简单的入门tensorflow的例子,非常值得自己动手亲自实践一下.由于我用的不是tensorflow中自带的mnist数据集,而是从kaggle的网站下载下来的,数据集有些不太一样,所以直接按照tensorflow官方文档上的参数训练的话还是踩了一些坑,特此记录. 首先从kaggle网站下载mnist数据集,一份是

tensorflow 基础学习五:MNIST手写数字识别

MNIST数据集介绍: from tensorflow.examples.tutorials.mnist import input_data # 载入MNIST数据集,如果指定地址下没有已经下载好的数据,tensorflow会自动下载数据 mnist=input_data.read_data_sets('.',one_hot=True) # 打印 Training data size:55000. print("Training data size: {}".format(mnist.

机器学习:手写数字数据集

手写数字数据集(下载地址:http://www.cs.nyu.edu/~roweis/data.html) 手写数字数据集包括1797个0-9的手写数字数据,每个数字由8*8大小的矩阵构成,矩阵中值的范围是0-16,代表颜色的深度. 使用sklearn.datasets.load_digits即可加载相关数据集. 参数:* return_X_y:若为True ,则以(data, target)形式返回数据:默认为False,表示以字典形式返回数据全部信息(包括data和target).* n_c

MNIST手写数字数据库

手写数字库很容易建立,但是总会很浪费时间.Google实验室的Corinna Cortes和纽约大学柯朗研究所的Yann LeCun建有一个手写数字数据库,训练库有60,000张手写数字图像,测试库有10,000张. 请访问原站 http://yann.lecun.com/exdb/mnist/ 该数据库在一个文件中包含了所有图像,使用起来有所不便.如果我把每个图像分别保存,成了图像各自独立的数据库. 并在Google Code中托管. 如果你有需要,欢迎在此下载: http://yann.le

Pytorch入门实战一:LeNet神经网络实现 MNIST手写数字识别

记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表的一片Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved.确实,使用p

简单HOG+SVM mnist手写数字分类

使用工具 :VS2013 + OpenCV 3.1 数据集:minst 训练数据:60000张 测试数据:10000张 输出模型:HOG_SVM_DATA.xml 数据准备 train-images-idx3-ubyte.gz:  training set images (9912422 bytes) train-labels-idx1-ubyte.gz:  training set labels (28881 bytes) t10k-images-idx3-ubyte.gz:   test s

在Kaggle手写数字数据集上使用Spark MLlib的朴素贝叶斯模型进行手写数字识别

昨天我在Kaggle上下载了一份用于手写数字识别的数据集,想通过最近学习到的一些方法来训练一个模型进行手写数字识别.这些数据集是从28×28像素大小的手写数字灰度图像中得来,其中训练数据第一个元素是具体的手写数字,剩下的784个元素是手写数字灰度图像每个像素的灰度值,范围为[0,255],测试数据则没有训练数据中的第一个元素,只包含784个灰度值.现在我打算使用Spark MLlib中提供的朴素贝叶斯算法来训练模型. 首先来设定Spark上下文的一些参数: val conf = new Spar

在Kaggle手写数字数据集上使用Spark MLlib的RandomForest进行手写数字识别

昨天我使用Spark MLlib的朴素贝叶斯进行手写数字识别,准确率在0.83左右,今天使用了RandomForest来训练模型,并进行了参数调优. 首先来说说RandomForest 训练分类器时使用到的一些参数: numTrees:随机森林中树的数目.增大这个数值可以减小预测的方差,提高预测试验的准确性,训练时间会线性地随之增长. maxDepth:随机森林中每棵树的深度.增加这个值可以是模型更具表征性和更强大,然而训练也更耗时,更容易过拟合. 在这次的训练过程中,我就是反复调整上面两个参数