【数据结构与算法】时间复杂度的计算

算法时间复杂度的计算 [整理]

时间复杂度算法

基本的计算步骤 

时间复杂度的定义 
    一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。

根据定义,可以归纳出基本的计算步骤 
1. 计算出基本操作的执行次数T(n) 
    基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。

2. 计算出T(n)的数量级 
    求T(n)的数量级,只要将T(n)进行如下一些操作:
    忽略常量、低次幂和最高次幂的系数

令f(n)=T(n)的数量级。

3. 用大O来表示时间复杂度 
    当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。

一个示例: 
(1) int num1, num2;
(2) for(int i=0; i<n; i++){ 
(3)     num1 += 1;
(4)     for(int j=1; j<=n; j*=2){ 
(5)         num2 += num1;
(6)     }
(7) }

分析:
1.
语句int num1, num2;的频度为1;
语句i=0;的频度为1;
语句i<n; i++; num1+=1; j=1; 的频度为n;4条
语句j<=n; j*=2; num2+=num1;的频度为n*log2n;3条
T(n) = 2 + 4n + 3n*log2n

2.
忽略掉T(n)中的常量、低次幂和最高次幂的系数
f(n) = n*log2n

3.
lim(T(n)/f(n)) = (2+4n+3n*log2n) / (n*log2n)
                     = 2*(1/n)*(1/log2n) + 4*(1/log2n) + 3

当n趋向于无穷大,1/n趋向于0,1/log2n趋向于0
所以极限等于3。

T(n) = O(n*log2n)

简化的计算步骤

再来分析一下,可以看出,决定算法复杂度的是执行次数最多的语句,这里是num2 += num1,一般也是最内循环的语句。

并且,通常将求解极限是否为常量也省略掉?

于是,以上步骤可以简化为: 
1. 找到执行次数最多的语句 
2. 计算语句执行次数的数量级
3. 用大O来表示结果

继续以上述算法为例,进行分析:
1.
执行次数最多的语句为num2 += num1

2.
T(n) = n*log2n
f(n) = n*log2n

3.
// lim(T(n)/f(n)) = 1
T(n) = O(n*log2n)

--------------------------------------------------------------------------------
一些补充说明 
最坏时间复杂度 
    算法的时间复杂度不仅与语句频度有关,还与问题规模及输入实例中各元素的取值有关。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。这就保证了算法的运行时间不会比任何更长。

求数量级 
即求对数值(log),默认底数为10,简单来说就是“一个数用标准科学计数法表示后,10的指数”。例如,5000=5x10 3 (log5000=3) ,数量级为3。另外,一个未知数的数量级为其最接近的数量级,即最大可能的数量级。

求极限的技巧 
要利用好1/n。当n趋于无穷大时,1/n趋向于0

--------------------------------------------------------------------------------
一些规则(引自:时间复杂度计算 ) 
1) 加法规则 
T(n,m) = T1(n) + T2(n) = O (max ( f(n), g(m) )

2) 乘法规则 
T(n,m) = T1(n) * T2(m) = O (f(n) * g(m))

3) 一个特例(问题规模为常量的时间复杂度) 
在大O表示法里面有一个特例,如果T1(n) = O(c), c是一个与n无关的任意常数,T2(n) = O ( f(n) ) 则有
T(n) = T1(n) * T2(n) = O ( c*f(n) ) = O( f(n) )

也就是说,在大O表示法中,任何非0正常数都属于同一数量级,记为O(1)。

4) 一个经验规则 
复杂度与时间效率的关系:
c < log2n < n < n*log2n < n2 < n3 < 2n < 3n < n! (c是一个常量)
|--------------------------|--------------------------|-------------|
          较好                     一般              较差
其中c是一个常量,如果一个算法的复杂度为c 、 log2n 、n 、 n*log2n,那么这个算法时间效率比较高 ,如果是 2n , 3n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。

--------------------------------------------------------------------------------------------------
复杂情况的分析

以上都是对于单个嵌套循环的情况进行分析,但实际上还可能有其他的情况,下面将例举说明。

1.并列循环的复杂度分析 
将各个嵌套循环的时间复杂度相加。

例如:

  for (i=1; i<=n; i++)
      x++;

  for (i=1; i<=n; i++)
      for (j=1; j<=n; j++)
          x++;

解:
第一个for循环
T(n) = n
f(n) = n
时间复杂度为Ο(n)

第二个for循环
T(n) = n2
f(n) = n2
时间复杂度为Ο(n2)

整个算法的时间复杂度为Ο(n+n2) = Ο(n2)。

2.函数调用的复杂度分析 
例如:
public void printsum(int count){
    int sum = 1;
    for(int i= 0; i<n; i++){
       sum += i;
    }   
    System.out.print(sum);
}

分析:
记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除了循环之外,其余的可运行语句的复杂度都是O(1)。
所以printsum的时间复杂度 = for的O(n)+O(1) = 忽略常量 = O(n)

*这里其实可以运用公式 num = n*(n+1)/2,对算法进行优化,改为:
public void printsum(int count){
    int sum = 1;
    sum = count * (count+1)/2;   
    System.out.print(sum);
}
这样算法的时间复杂度将由原来的O(n)降为O(1),大大地提高了算法的性能。

3.混合情况(多个方法调用与循环)的复杂度分析 
例如:
public void suixiangMethod(int n){
    printsum(n);//1.1
    for(int i= 0; i<n; i++){
       printsum(n); //1.2
    }
    for(int i= 0; i<n; i++){
       for(int k=0; k<n; k++){
        System.out.print(i,k); //1.3
      }
  }
suixiangMethod 方法的时间复杂度需要计算方法体的各个成员的复杂度。
也就是1.1+1.2+1.3 = O(1)+O(n)+O(n2) ----> 忽略常数 和 非主要项 == O(n2)

--------------------------------------------------------------------------------------------------
更多的例子

O(1) 
交换i和j的内容
temp=i;
i=j;
j=temp;

以上三条单个语句的频度为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n2
    sum=0;                /* 执行次数1 */
    for(i=1;i<=n;i++)      
       for(j=1;j<=n;j++) 
         sum++;       /* 执行次数n2 */
解:T(n) = 1 + n2 = O(n2)

for (i=1;i<n;i++)
   { 
       y=y+1;        ①   
       for (j=0;j<=(2*n);j++)    
          x++;        ②      
   }         
解:  语句1的频度是n-1
         语句2的频度是(n-1)*(2n+1) = 2n2-n-1
         T(n) = 2n2-n-1+(n-1) = 2n2-2
         f(n) = n2
         lim(T(n)/f(n)) = 2 + 2*(1/n2) = 2
         T(n) = O(n2).

O(n)                                         
   a=0;
   b=1;                     ①
   for (i=1;i<=n;i++) ②
   {  
      s=a+b;    ③
      b=a;     ④  
      a=s;     ⑤
   }
解:  语句1的频度:2,        
         语句2的频度:n,        
         语句3的频度:n,        
         语句4的频度:n,    
         语句5的频度:n,                                  
         T(n) = 2+4n
         f(n) = n
         lim(T(n)/f(n)) = 2*(1/n) + 4 = 4
         T(n) = O(n).     
                                                                            
O(log2n) 
   i=1;       ①
   while (i<=n)
      i=i*2; ②
解: 语句1的频度是1,  
       设语句2的频度是t,  则:2t<=n;  t<=log2n
       考虑最坏情况,取最大值t=log2n,
        T(n) = 1 + log2n
        f(n) = log2n
        lim(T(n)/f(n)) = 1/log2n + 1 = 1
        T(n) = O(log2n)

O(n3
   for(i=0;i<n;i++)
   {  
      for(j=0;j<i;j++)  
      {
         for(k=0;k<j;k++)
            x=x+2;  
      }
   }
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 ,  所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/2次
T(n) = n(n+1)(n-1)/2 = (n3-n)/2?    <--4
f(n) = n3
所以时间复杂度为O(n3)。

来源: http://univasity.iteye.com/blog/1164707

来自为知笔记(Wiz)

时间: 2024-08-04 14:36:16

【数据结构与算法】时间复杂度的计算的相关文章

算法时间复杂度的计算 [整理]

基本的计算步骤 时间复杂度的定义 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数.记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度. 根据定义,可以归纳出基本的计算步骤 1. 计算出基本操作的执行次数T(n) 基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语

转 算法时间复杂度的计算 [整理]

来自 http://univasity.iteye.com/blog/1164707 基本的计算步骤  时间复杂度的定义     一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数.记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度. 根据定义,可以归纳出基本的计算步骤 1. 计算出

算法时间复杂度的计算

常常说快速排序的算法时间复杂度为O(nlogn),但是这个值是怎么算出来的,为什么就是O(nlogn);很多书上一上来就大谈特谈那么多理论,我实在是受不了,我是看不懂,我不知道作者自己懂不懂,深刻的表示怀疑! 就拿这个logn来说,我隐隐记得在高中学的时候,这个底数省略的话就是默认10,查了资料也确实是10,但是貌似我们讲算法书上的意思都是以2为底,为什么他妈的书上不解释一下. 快速排序的时间复杂度为O(nlgn),即:每次都可以分为均匀两段,根据这个,推算出时间复杂度为O(nlgn).这个是如

数据结构和算法-时间复杂度和空间复杂度

[算法时间复杂度的定义] 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级.算法的时间复杂度,也就是算法的时间量度,记作:T(n) = O(f(n)).它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度.其中f(n)是问题规模n的某个函数. 即:执行次数=时间 [如何分析一个算法的时间复杂度?即:如何推到大O阶呢?] -用常数1取代运行时间中的所有加法常数 -在修改

算法——算法时间复杂度的计算和大O阶的推导

在算法分析中,我们将语句总的执行次数记为T(n)进而分析T(n)随n的变化情况确认T(n)的数量级.一般情况下,T(n)随n增大变化最缓慢的算法为最优算法. 根据定义,T(n)的求法是很简单的,也就是简单的数数.举个例子: int i; for(i=0;i<n;i++); 这里int执行一次,for循环里的语句执行n次,所以T(n)=n+1;但是当n变大时,这个常数就显得无足轻重了,所以它的算法复杂度为O(n). 同样的,对于下面的代码: int i,j; for(i=0;i<n;i++) f

算法时间复杂度

flyfish 2015-7-21 引用自<大话数据结构> 算法时间复杂度定义 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级.算法的时间复杂度,也就是算法的时间量度,记作:T(n)=O(f(n)).它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度.其中f(n)是问题规模n的某个函数. 这样用大写O( )来体现算法时间复杂度的记法,我们称之为大O记法. 一般情

数据结构与算法之解析之路

数据结构是计算机存储.组织数据的方式.数据结构是指相互之间存在一种或多种特定关系的数据元素的集合.通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率.数据结构往往同高效的检索算法和索引技术有关.我们将会在本系列的博客种利用数据结构的知识打造一个可复用的模板库,基础语言是 C++. 本系列博客内容是根据狄泰软件学院的C++深度解析教程的内容总结而来,包含各种数据结构类型,如链表.树.图等类型. 数据结构基础 算法时间复杂度及效率 欢迎大家一起来学习数据结构,可以加我QQ:24334308

数据结构与算法-怎样计算时间复杂度

今天我们来谈一下怎样计算时间复杂度. 时间复杂度概念:(百度版) 同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率. 算法分析的目的在于选择合适算法和改进算法. 计算机科学中,算法的时间复杂度是一个函数,它定量描写叙述了该算法的执行时间. 这是一个关于代表算法输入值的字符串的长度的函数.时间复杂度经常使用大O符号表述,不包含这个函数的低阶项和首项系数.使用这样的方式时.时间复杂度可被称为是渐近的.它考察当输入值大小趋近无穷时的情况. 注意:本文承接上一篇<数据结构与算法-

数据结构和算法之时间复杂度和空间复杂度

前言 上一篇<数据结构和算法>中我介绍了数据结构的基本概念,也介绍了数据结构一般可以分为逻辑结构和物理结构.逻辑结构分为集合结构.线性结构.树形结构和图形结构.物理结构分为顺序存储结构和链式存储结构.并且也介绍了这些结构的特点.然后,又介绍了算法的概念和算法的5个基本特性,分别是输入.输出.有穷性.确定性和可行性.最后说阐述了一个好的算法需要遵守正确性.可读性.健壮性.时间效率高和存储量低.其实,实现效率和存储量就是时间复杂度和空间复杂度.本篇我们就围绕这两个"复杂度"展开