nyoj42欧拉回路

一笔画问题

时间限制:3000 ms  |  内存限制:65535 KB

难度:4

描述

zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下来。

规定,所有的边都只能画一次,不能重复画。

输入
第一行只有一个正整数N(N<=10)表示测试数据的组数。
每组测试数据的第一行有两个正整数P,Q(P<=1000,Q<=2000),分别表示这个画中有多少个顶点和多少条连线。(点的编号从1到P)
随后的Q行,每行有两个正整数A,B(0<A,B<P),表示编号为A和B的两点之间有连线。
输出
如果存在符合条件的连线,则输出"Yes",
如果不存在符合条件的连线,输出"No"。

 1
 2 #include<cstdio>
 3 #include<cstdlib>
 4 #include<cstring>
 5 #include<algorithm>
 6 using namespace std;
 7
 8 int edge[1002][1002];
 9 int visited[1002];
10 int degree[1002];
11 int sum;
12
13 void dfs(int p,int i){
14     int j;
15     visited[i+1]=1;
16     for(j=0;j<p;j++){
17         if(edge[i][j]==1&&visited[j+1]==0){
18             dfs(p,j);
19         }
20     }
21 }
22
23 int main(int argc, char const *argv[])
24 {
25     int n;
26     scanf("%d",&n);
27     while(n--){
28         int p,q;
29         memset(edge,0,sizeof(edge));
30         memset(visited,0,sizeof(visited));
31         memset(degree,0,sizeof(degree));
32         sum=0;
33         scanf("%d%d",&p,&q);
34         for(int i=0;i<q;i++){
35             int a,b;
36             scanf("%d%d",&a,&b);
37             edge[a-1][b-1]=edge[b-1][a-1]=1;
38             degree[a]++;
39             degree[b]++;
40
41         }
42
43         for(int i=1;i<=p;i++){
44             if(degree[i]%2!=0){
45                 sum++;
46             }
47         }
48         dfs(p,0); //这里的0是随意的
49         int t=0;
50         for(int i=1;i<=p;i++){
51             if(visited[i]==0){
52                 t=1;
53             }
54         }
55         if((sum==0||sum==2)&&t==0){
56             printf("Yes\n" );
57         }
58         else printf("No\n");
59     }
60     return 0;
61 }

时间: 2024-12-21 19:42:10

nyoj42欧拉回路的相关文章

NYOJ42 一笔画问题 【欧拉回路】+【并查集】

一笔画问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下来. 规定,所有的边都只能画一次,不能重复画. 输入 第一行只有一个正整数N(N<=10)表示测试数据的组数. 每组测试数据的第一行有两个正整数P,Q(P<=1000,Q<=2000),分别表示这个画中有多少个顶点和多少条连线.(点的编号从1到P) 随后的Q行,每行有两个正整数A,B(0<

nyoj42 一笔画问题 (欧拉回路)

题目42 题目信息 运行结果 本题排行 讨论区 一笔画问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下来. 规定,所有的边都只能画一次,不能重复画. 输入 第一行只有一个正整数N(N<=10)表示测试数据的组数. 每组测试数据的第一行有两个正整数P,Q(P<=1000,Q<=2000),分别表示这个画中有多少个顶点和多少条连线.(点的编号从1到P)

nyist 42 一笔画 (欧拉回路 + 并查集)

nyoj42 分析: 若图G中存在这样一条路径,使得它恰通过G中每条边一次,则称该路径为欧拉路径. 若该路径是一个圈,则称为欧拉(Euler)回路. 具有欧拉回路的图称为欧拉图(简称E图).具有欧拉路径但不具有欧拉回路的图称为半欧拉图. 先说一下欧拉路径.欧拉回路的充要条件: 1.无向连通图G是欧拉图,当且仅当G不含奇数度结点(G的所有结点度数为偶数): 2.无向连通图G含有欧拉通路,当且仅当G有零个或两个奇数度的结点: 3.有向连通图D是欧拉图,当且仅当该图为连通图且D中每个结点的入度=出度

Fleury 欧拉回路

基本概念 (1)定义 欧拉通路 (欧拉迹)—通过图中每条边一次且仅一次,并且过每一顶点的通路. 欧拉回路 (欧拉闭迹)—通过图中每条边一次且仅一次,并且过每一顶点的回路. 欧拉图—存在欧拉回路的图.欧拉图就是从一顶出发每条边恰通过一次又能回到出发顶点的那种图,即不重复的行遍所有的边再回到出发点. 通路和回路-称vie1e2…envj为一条从 vi到 vj且长度为n的通路,其中长度是指通路中边的条数.称起点和终点相同的通路为一条回路. 简单图-不含平行边和自回路的图. 混合图-既有有向边,也有无向

混合图的欧拉回路判定

对于有向图和无向图的欧拉回路判定,很容易做到.那对于混合图呢?? 混合图就是图中既存在无向边又存在有向边的图. 至于解法: 转载自这里 把该图的无向边随便定向,计算每个点的入度和出度.如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路.因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路. 好了,现在每个点入度和出度之差均为偶数.那么将这个偶数除以2,得x.也就是说,对于每一个点,只要将x条边改变方向(入>出就是变入,出>入就是变出),就能保证出 = 入.如果

hdu1116 欧拉回路

1 //Accepted 248 KB 125 ms 2 //欧拉回路 3 //以26个字母为定点,一个单词为从首字母到末尾字母的一条边 4 //下面就是有向图判断欧拉回路 5 //连通+节点入度和==出度和 或者 存在一对节点一个入度比出度大1,一个小1 6 #include <cstdio> 7 #include <cstring> 8 #include <iostream> 9 #include <queue> 10 using namespace s

POJ 1041 John&#39;s trip 无向图的【欧拉回路】路径输出

欧拉回路第一题TVT 本题的一个小技巧在于: [建立一个存放点与边关系的邻接矩阵] 1.先判断是否存在欧拉路径 无向图: 欧拉回路:连通 + 所有定点的度为偶数 欧拉路径:连通 + 除源点和终点外都为偶数 有向图: 欧拉回路:连通 + 所有点的入度 == 出度 欧拉路径:连通 + 源点 出度-入度=1 && 终点 入度 - 出度 = 1 && 其余点 入度 == 出度: 2.求欧拉路径 : step 1:选取起点(如果是点的度数全为偶数任意点为S如果有两个点的度数位奇数取一

寒假集训日志(二)——最小生成树,拓扑排序,欧拉回路,连通路

今天学的内容挺多的. (一)首先说最小生成树,两种算法: 1.Kruskal算法( 将边排序,然后再选,关键在于检查是否连通,使用并查集) 2.Prim算法(使用点集,有点类似与最短路的算法) 第一题是并查集算法的使用: A - The Suspects Time Limit:1000MS     Memory Limit:20000KB     64bit IO Format:%I64d & %I64u Submit Status Description 严重急性呼吸系统综合症( SARS),

HDU-1878 判断无向图欧拉回路,水

HDU 1878 题意:问一个无向图是否存在欧拉回路. 总结: 1.一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图.2.一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图.3.要判断一个混合图G(V,E)(既有有向边又有无向边)是欧拉图,方法如下:假设有一张图有向图G',在不论方向的情况下它与G同构.并且G'包含了G的所有有向边.那么如果存在一个图G'使得G'存在欧拉回路,那么G就存在欧拉回路. // HDU-1878 #include<bits/stdc++