数字三角形(蓝桥杯 动态规划)

问题描述

  (图3.1-1)示出了一个数字三角形。 请编一个程序计算从顶至底的某处的一条路
  径,使该路径所经过的数字的总和最大。
  ●每一步可沿左斜线向下或右斜线向下走;
  ●1<三角形行数≤100;
  ●三角形中的数字为整数0,1,…99;

  .
  (图3.1-1)

输入格式

  文件中首先读到的是三角形的行数。

  接下来描述整个三角形

输出格式

  最大总和(整数)

样例输入

5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

样例输出

30

从最下面往上找,由局部最优解找整体最优解。

#include<stdio.h>
#include<iostream>
using namespace std;

int a[110][110];
int dp[110][110];
int n;

int main()
{
    cin>>n;
    for(int i=0;i<n;i++)
        for(int j=0;j<=i;j++)
            cin>>a[i][j];
    for(int i=0;i<=n-1;i++)
        dp[n-1][i]=a[n-1][i];
    for(int i=n-2;i>=0;i--)
        for(int j=0;j<=i;j++)
            dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+a[i][j];
    cout<<dp[0][0];
    return 0;
}
时间: 2024-12-28 12:23:43

数字三角形(蓝桥杯 动态规划)的相关文章

K好数(蓝桥杯 动态规划)

问题描述 如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数.求L位K进制数中K好数的数目.例如K = 4,L = 2的时候,所有K好数为11.13.20.22.30.31.33 共7个.由于这个数目很大,请你输出它对1000000007取模后的值. 输入格式 输入包含两个正整数,K和L. 输出格式 输出一个整数,表示答案对1000000007取模后的值. 样例输入 4 2 样例输出 7 数据规模与约定 对于30%的数据,KL <= 106: 对于50%的

递归--数字黑洞--蓝桥杯

问题描述 任意一个四位数,只要它们各个位上的数字是不全相同的,就有这样的规律: 1)将组成该四位数的四个数字由大到小排列,形成由这四个数字构成的最大的四位数: 2)将组成该四位数的四个数字由小到大排列,形成由这四个数字构成的最小的四位数(如果四个数中含有0,则得到的数不足四位): 3)求两个数的差,得到一个新的四位数(高位零保留). 重复以上过程,最后一定会得到的结果是6174. 比如:4312 3087 8352 6174,经过三次变换,得到6174 输入格式 一个四位整数,输入保证四位数字不

蓝桥杯 算法训练 ALGO-124 数字三角形

算法训练 数字三角形 时间限制:1.0s   内存限制:256.0MB 问题描述 (图3.1-1)示出了一个数字三角形. 请编一个程序计算从顶至底的某处的一条路 径,使该路径所经过的数字的总和最大. ●每一步可沿左斜线向下或右斜线向下走: ●1<三角形行数≤100: ●三角形中的数字为整数0,1,-99: . (图3.1-1) 输入格式 文件中首先读到的是三角形的行数. 接下来描述整个三角形 输出格式 最大总和(整数) 样例输入 573 88 1 02 7 4 44 5 2 6 5 样例输出 3

[动态规划]数字三角形

动态规划一直是一个很头疼的问题啊. 最近在看这方面的东西,记录一下刘汝佳书里的动态规划章节里的数字三角形题目. 这道题很基础,但总结的三个动态规划很清晰. 有一个由非负整数组成的三角形,第一行只有一个数,除了最下行之外每个数的左下方和右下方各有一个数,形如: 1 3 2 4 10 1 4 3 2 20 每个结点都可到它左右子结点,例如3可以到4也可以到10. 从第一行开始每次可以往左下或右下走一格,直到走到最下,把沿途结点的值相加,如何走才能得到最大值. 如果遍历的话,n层会有2的n次方种可能性

动态规划--数字三角形问题

1. 问题描述 有一个像这样的数字三角形: 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 从顶点开始,每个数字向下层走只能有左下和右下两个方向,求出到达最后一行时最大的路径之和. Input 第1 行是数字三角形的行数n,1<= n <=100. 接下来n行是数字三角形各行中的数字.所有数字在0---99之间. 比如Input是: 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 则output是30. 2. 问题求解 这是一个典型的动态规划求解问题,因为它符合动态

蓝桥杯:回文数字

*/--> pre.src {background-color: Black; color: White;} pre.src {background-color: Black; color: White;} pre.src {background-color: Black; color: White;} pre.src {background-color: Black; color: White;} pre.src {background-color: Black; color: White;}

蓝桥杯 节点选择 树状动态规划

算法训练 结点选择 时间限制:1.0s   内存限制:256.0MB 锦囊1 使用树型动态规划. 锦囊2 用F[i]表示从子树i中选择结点,且结点i必须被选择的最大值,用G[i]表示从子树i中选择结点,且结点i必须不被选择的最大值. 则F[i]=a[i]+\sum(G[j]),其中a[i]表示结点i的权值,j是i的子结点. G[i]=\sum(max(F[j], G[j])),其中j是i的子结点. 问题描述 有一棵 n 个节点的树,树上每个节点都有一个正整数权值.如果一个点被选择了,那么在树上和

动态规划 数字三角形(递归,递推,记忆化搜索)

题目要求: 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 在上面的数字三角形中寻找在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大.路径上的每一步都只能往左下或右下走.只需要求出这个最大和即可,不必给出具体路径. 三角形的行数大于1小于等于100,数字为 0 - 99 输入格式: 5 //三角形行数.下面是三角形 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 解题思路: 用二维数组存放数字三角形 D[r][j] //表示第i行第j个元素的

动态规划入门-数字三角形(从朴素递归到各种优化)

数字三角形(POJ1163) Description 73 88 1 02 7 4 44 5 2 6 5 在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大.路径上的每一步都只能往左下或右下走.只需要求出这个最大和即可,不必给出具体路径.三角形的行数大于1小于等于100,数字为 0 - 99 输入格式:5 //三角形行数.下面是三角形73 88 1 02 7 4 4 4 5 2 6 5 要求输出最大和 Sample Output 30 Source IOI 1994