POJ 2728 最优比率生成树

思路:

转自魏神:

其实原题就是求 MIN( ∑CiXi / ∑DiXi ) Xi∈{0,1} ,对每个生成树,设其比率r=∑CiXi / ∑DiXi ,可得∑CiXi - ∑DiXi * r=0(条件1)

那么对于所有的生成树,显然∑CiXi - ∑DiXi * min(r) >= 0,当 ∑CiXi / ∑DiXi = min(r)时,等号成立。 而我们现在不知道min(r)是多少,只好进行枚举,对每个枚举的r ,构建新的权值(Ci-Di*r),然后求最小生成树,  为什么求最小呢? 我的理解就是这是为了寻找使得生成树的总权值为0的可能性,因为只有当其等于0
的时候,才满足了条件1 这个条件, 说明这个r是可行的,并且如果r枚举到值为min(r)时,其最小生成树的的总权值必然恰好等于0,但是如果不能等于0, 比如大于0, 显然是对该r值,所有的生成树上无论如何也满足不了条件1,说明r值就是偏小了。同理如果小于0,r值是偏大的,说明可能存在某些生成树使得满足条件1,而我们的目标是在满足条件1的情况下使得r最小。

根据这个我们可以发现,实际上r的值是可以进行二分查找的。 而也有人给出了更为高效的迭代方法。

求最小生成树的时候得用prim算法,因为是稠密图,而且需要的边树值才改变,所以时间较快。如果用kruscal来搞的话就直接T了,我已经写了一发kruscal的稳T,因为要每次都要变边然后排序边又加并查集,所以时间太多。

二分代码:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<set>
#include<cmath>
#include<bitset>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson i<<1,l,mid
#define rson i<<1|1,mid+1,r
#define llson j<<1,l,mid
#define rrson j<<1|1,mid+1,r
#define eps 1e-7
#define INF 0x7fffffff
#define maxn 1005
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
struct abc
{
    double x,y,z;
}e[maxn];
double calc(int i,int j)
{
    return sqrt((e[i].x-e[j].x)*(e[i].x-e[j].x)+(e[i].y-e[j].y)*(e[i].y-e[j].y));
}
int vis[maxn],n;
double dp[maxn],Map[maxn][maxn];
double prim(int st,double r)
{
    double sum=0;
    int i,j;
    for(i=0;i<n;i++)
    {
        vis[i]=0;
        dp[i]=fabs(e[st].z-e[i].z)-Map[st][i]*r;
    }
    vis[st]=1;
    for(i=0;i<n;i++)
    {
        double Min=INF;
        int now=-1;
        for(j=0;j<n;j++)
            if(!vis[j]&&dp[j]<Min)
                now=j,Min=dp[j];
        if(now!=-1)
        {
            vis[now]=1;
            sum+=dp[now];
            for(j=0;j<n;j++)
            {
                double tmp=fabs(e[now].z-e[j].z)-Map[now][j]*r;
                if(!vis[j]&&tmp<dp[j])
                    dp[j]=tmp,vis[j]=0;
            }
        }
    }
    return sum;
}
int main()
{
    while(scanf("%d",&n)&&n)
    {
        int i,j;
        for(i=0;i<n;i++)
            scanf("%lf%lf%lf",&e[i].x,&e[i].y,&e[i].z);
        for(i=0;i<n;i++)
            for(j=0;j<n;j++)
                Map[i][j]=calc(i,j);
        double l=0,r=100,mid;
        while(r-l>eps)
        {
            mid=(l+r)/2.0;
            if(prim(0,mid)>=0) l=mid;
            else r=mid;
        }
        printf("%.3f\n",r);
    }
    return 0;
}
时间: 2024-12-26 07:51:16

POJ 2728 最优比率生成树的相关文章

Desert King (poj 2728 最优比率生成树 0-1分数规划)

Language: Default Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22113   Accepted: 6187 Description David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels

POJ 2728 Desert King(初遇最优比率生成树)

题目链接:http://poj.org/problem?id=2728 题意:给出几个村庄的坐标x[i]和y[i],以及海拔z[i].要在这些村庄之间建水渠,费用和两个村庄的海拔差成正比,水渠长度和村庄二维坐标(x,y)上的距离成正比,要求一种方案使得(总的花费/总的水渠长度)最小,输出这个最小值,保留三位小数. 这是一道0,1分数规划的题目,求的是一棵生成树sigma(dh)/sigma(l) 的最小值(dh是树上两点之间的高度差,l是树上两点之间的边长). 按0,1分数规划的思路对解进行分析

POJ 2728 Desert King (最优比率生成树---01分数规划)

题目地址:POJ 2728 01分数规划的应用之一-最优比率生成树. 跟普通的01分数规划类似,只是这题的验证函数改成了最小生成树来验证.弱用的迭代法. 代码如下: #include <iostream> #include <string.h> #include <math.h> #include <queue> #include <algorithm> #include <stdlib.h> #include <map>

POJ 2728 Desert King(最优比率生成树 01分数规划)

http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简单,因为这题是稠密图,所以用prim算法会好点. 1 #include<iostream> 2 #include<algorithm> 3 #include<cstring> 4 #include<cstdio> 5 #include<vector>

poj 2728 Desert King(最优比率生成树,01分数规划)

http://poj.org/problem?id=2728 大致题意:有n个村庄,输入每个村庄的位置和高度,这n个村庄要连在一起,村与村之间的长度为他们之间的欧几里得距离,花费是两村之间的高度差,要求连在一起的花费和与距离和之比的最小值. 思路:明显的最优比率生成树.二分答案λ,每条边重新赋权c[i] - λd[i] ,因为要求比值最小,那么对于所有的生成树,它们的f[λ]必须>=0,所以只需求得基于最小生成树的f'[λ],当f'[λ] = 0时即找到了正解λ*. 二分: #include <

【POJ】【2728】 Desert King 最优比率生成树

题意:给出每个点的坐标(x,y,z),两点间距离是x,y的直线距离,边权为z差,求∑边权 / ∑距离 的最小值. 最优比率生成树!(分数规划) 就是根据分数规划的思想建树,每次看得到的总和是正是负. 二分代码: #include<string.h> #include<stdio.h> #include<stdlib.h> #include<math.h> #define N 1010 typedef struct KSD { int x,y,z; }ksd;

[POJ 2728]Desert King(0-1分数规划/最优比率生成树)

Description David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be

最优比率生成树

最优比率生成树题意与最小生成树基本相同,但由单一边权的最小值转化为第一边权的总和与第二边权的总和比值的最小值,这导致算法发生巨大变化,以致于需要采用二分的方法,并进行一系列复杂的判定……(好吧,是我看来)    对于给定的有向图,要求求出一颗子树G,使其各边收益总和与花费的总和比值尽可能小,即Σ(benifit[i])/Σ(cost[i]) i∈G,我们可以二分答案λ的上下界[0,∞)(事实上上界取2^就好了),当λ为最优解时f(λ)=Σ(benifit[i])-λ*Σ(cost[i])=Σ(d

【最优比率生成树】poj2728 Desert King

最优比率生成树教程见http://blog.csdn.net/sdj222555/article/details/7490797 个人觉得很明白易懂,但他写的代码略囧. 模板题,但是必须Prim,不能用Kruscal,因为是完全图 Code: 1 #include<cstdio> 2 #include<cmath> 3 #include<cstring> 4 #include<algorithm> 5 using namespace std; 6 struc