蜘蛛牌
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3761 Accepted Submission(s):
1606
Problem Description
蜘蛛牌是windows
xp操作系统自带的一款纸牌游戏,游戏规则是这样的:只能将牌拖到比她大一的牌上面(A最小,K最大),如果拖动的牌上有按顺序排好的牌时,那么这些牌也跟着一起移动,游戏的目的是将所有的牌按同一花色从小到大排好,为了简单起见,我们的游戏只有同一花色的10张牌,从A到10,且随机的在一行上展开,编号从1到10,把第i号上的牌移到第j号牌上,移动距离为abs(i-j),现在你要做的是求出完成游戏的最小移动距离。
Input
第一个输入数据是T,表示数据的组数。
每组数据有一行,10个输入数据,数据的范围是[1,10],分别表示A到10,我们保证每组数据都是合法的。
Output
对应每组数据输出最小移动距离。
Sample Input
1
1 2 3 4 5 6 7 8 9 10
Sample Output
9
Author
xhd
Source
很久之前...开学初吧困扰自己的一道破题,当时竟然连爆搜都没想到。
这个牌任意移动,所以每次的出发点并不固定,当时一直按照固定的方法来做自然WA了= =,今天写刚开始是个无剪纸爆搜2000+ms。。。。
后来发现剪枝:当总步数大于当前最小步数时,直接return,总算卡进1000ms内了,300+,看榜单都是0ms。。。原来还能用区间dp求解,而且我发现自己把这个搜索想的复杂了。
仔细想想,假设从一个位置移动到另一个位置算一次移动的话,无论怎么操作,最终(不做无意义的移动时)都要移动九次即可,只是总步数不同而已,一开始并没有想到这个!
原先搜索代码:
#include<bits/stdc++.h>
using namespace std;
struct Pock //结构体保存当前位置最小和最大牌面值
{
int up,down;
}a[15];
int s;
int debug=10;
bool pd()
{
int book=0,i;
for(i=1;i<=debug;++i)
if(a[i].up==0&&a[i].down==0) ++book;
return (book==debug-1?1:0);
}
void dfs(int sumn)
{
if(sumn>=s) return; //剪枝1,步数大于最小时直接return
if(pd()){
if(sumn<s) s=sumn;
return;
}
for(int i=1;i<=debug;++i){
if(a[i].up!=0&&a[i].down!=0){
for(int j=1;j<=debug;++j){
if(i==j) continue;
if(a[i].up+1==a[j].down){
int tup=a[i].up;
int tdown=a[i].down;
int jdown=a[j].down;
a[i].up=a[i].down=0;
a[j].down=tdown;
dfs(sumn+abs(i-j));
a[i].up=tup;
a[i].down=tdown;
a[j].down=jdown;
break; //剪枝2,比i位置up值大一的位置只会出现一个,所以搜索完直接break;
}
}
}
}
}
int main()
{
int n,t,i,j,c;
scanf("%d",&t);
while(t--){s=1e9;
for(i=1;i<=debug;++i){
scanf("%d",&c);
a[i].up=c;
a[i].down=c;
}
dfs(0);
printf("%d\n",s);
}
return 0;
}
优化后的剪枝:
#include<bits/stdc++.h>
using namespace std;
int a[15],s;
bool vis[15];
void dfs(int cur,int sumn)
{
if(sumn>=s) return;
if(cur==10){
s=sumn;
return;
}
for(int i=1;i<=10;++i){
if(!vis[i]){
vis[i]=1;
for(int j=i+1;j<=10;++j){
if(!vis[j]){
dfs(cur+1,sumn+abs(a[i]-a[j]));
break;
}
}
vis[i]=0;
}
}
}
int main()
{
int i,j,t;
cin>>t;
while(t--){s=1e10,memset(vis,0,sizeof(vis));
for(i=1;i<=10;++i) {cin>>j;a[j]=i;}
dfs(1,0);
cout<<s<<endl;
}
return 0;
}
优化原理:
a[i]即面值为i的牌所在位置,之所以这样写是为了方便搜索,
一:面值为m的牌的位置只可能出现在面值>=m的位置上,因为只能把小牌移动到大牌上!
二:移动次数超过九次说明已经移动完毕!
这个写法简直不能再帅了!!!