FZU 2148 moon game (计算几何判断凸包)

Moon Game

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Fat brother and Maze are playing a kind of special (hentai) game in the clearly blue sky which we can just consider as a kind of two-dimensional plane. Then Fat brother starts to draw N starts in the sky which we can just consider each as a point. After he draws these stars, he starts to sing the famous song “The Moon Represents My Heart” to Maze.

You ask me how deeply I love you,

How much I love you?

My heart is true,

My love is true,

The moon represents my heart.

But as Fat brother is a little bit stay-adorable(呆萌), he just consider that the moon is a special kind of convex quadrilateral and starts to count the number of different convex quadrilateral in the sky. As this number is quiet large, he asks for your help.

Input

The first line of the date is an integer T, which is the number of the text cases.

Then T cases follow, each case contains an integer N describe the number of the points.

Then N lines follow, Each line contains two integers describe the coordinate of the point, you can assume that no two points lie in a same coordinate and no three points lie in a same line. The coordinate of the point is in the range[-10086,10086].

1 <= T <=100, 1 <= N <= 30

Output

For each case, output the case number first, and then output the number of different convex quadrilateral in the sky. Two convex quadrilaterals are considered different if they lie in the different position in the sky.

Sample Input

2

4

0 0

100 0

0 100

100 100

4

0 0

100 0

0 100

10 10

Sample Output

Case 1: 1

Case 2: 0

题意:t组数据,每组n个点,n小于等于30,问从这些点中任取四个点构成的四边形有多少个是凸四边形。

题解:暴力跑,用三角形有向面积的绝对值判断是否为凹多边形,注意优化即可。

开始用ijkl都是从0开始跑的叉积判断,TLE了,这道题用面积判断更好。

#include <iostream>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
#include <vector>
const double PI=acos(-1.0);
using namespace std;
struct Point{
    double x,y;
    int id;
    Point(double x=0,double y=0,int id=-1):x(x),y(y){} //构造函数,方便代码编写
};
typedef Point Vector; //从程序上实现,Vector只是Point的别名
Vector operator + (Vector A,Vector B)
{
    return Vector(A.x+B.x,A.y+B.y);
}
//点-点=向量
Vector operator - (Point A,Point B)
{
    return Vector(A.x-B.x,A.y-B.y);
}
//向量*数=向量
Vector operator * (Vector A,double p)
{
    return Vector(A.x*p,A.y*p);
}
//向量/数=向量
Vector operator / (Vector A,double p)
{
    return Vector(A.x/p,A.y/p);
}
//运算符重载
bool operator <(const Point &a,const Point &b)
{
    return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
const double eps=1e-10;
//三态函数精度问题
int dcmp(double x)
{
    if(fabs(x)<eps) return 0; else return x<0?-1:1;
}
bool operator ==(const Point &a,const Point &b)
{
    return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
//叉积
double Cross(Vector A,Vector B)
{
    return A.x*B.y-A.y*B.x;
}
double Area(Point A,Point B,Point C)
{
    return Cross(B-A,C-A);
}
int main()
{
    int t,cas=1;
    scanf("%d",&t);
    while(t--)
    {
        int n;
        Point p[30];
        scanf("%d",&n);
        for(int i=0;i<n;i++)
            scanf("%lf%lf",&p[i].x,&p[i].y);
        int ans=0;
        for(int i=0;i<n-3;i++)
        for(int j=i+1;j<n;j++)
        for(int k=j+1;k<n;k++)
        for(int l=k+1;l<n;l++)
        {
            double a=fabs(Area(p[i],p[j],p[k])); //有向面积
            double b=fabs(Area(p[j],p[k],p[l]));
            double c=fabs(Area(p[k],p[l],p[i]));
            double d=fabs(Area(p[l],p[i],p[j]));
            double m=max(max(a,b),max(c,d));
            double sum=a+b+c+d-m;
            if(sum==m)
            continue;
            ans++;
        }
        printf("Case %d: %d\n",cas++,ans);
    }
    return 0;
}
时间: 2024-10-04 19:45:24

FZU 2148 moon game (计算几何判断凸包)的相关文章

FZU Problem 2148 Moon Game (判断凸四边形)

题目链接 题意 : 给你n个点,判断能形成多少个凸四边形. 思路 :如果形成凹四边形的话,说明一个点在另外三个点连成的三角形内部,这样,只要判断这个内部的点与另外三个点中每两个点相连组成的三个三角形的面积和要与另外三个点组成的三角形面积相同. 中途忘了加fabs还错了好几次 1 //FZU2148 2 #include <cstdio> 3 #include <cstring> 4 #include <iostream> 5 #include <cmath>

FZU 2148 Moon Game --判凹包

题意:给一些点,问这些点能够构成多少个凸四边形 做法: 1.直接判凸包 2.逆向思维,判凹包,不是凹包就是凸包了 怎样的四边形才是凹四边形呢?凹四边形总有一点在三个顶点的内部,假如顶点为A,B,C,D,则构成四个三角形:ABC,ACD,ABD,BCD,假如某一个三角形(最外的三个顶点)的面积等于另三个三角形面积之和,则是凹四边形. 然后做四个for循环,枚举即可,因为N最多才30. 代码: #include <iostream> #include <cstdio> #include

【暴力+排除法】FZU 2148 Moon Game

比赛地址:点击打开链接 比赛做粗的4个题几乎都是水,感觉弱的水爆炸了. 这个题最初的思路是枚举找出四个点,做凸多边形的模板判断.C(30,4). 结果答案不对..后来发现模板上是要求点对的顺序是逆时针或顺时针输入. 于是用时钟排序的函数排序后判断: bool cmp(point p1, point p2) { return atan2(p1.y, p1.x) < atan2(p2.y, p2.x); } 结果tle了两遍.. 最后发现其实不用模板上这样.可以用判断是不是凹多边形的办法,反正总体是

ACM: FZU 2148 Moon Game - 海伦公式

FZU 2148  Moon Game Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Description Fat brother and Maze are playing a kind of special (hentai) game in the clearly blue sky which we can just consider as a kind of two-dimensio

FZU 2148 Moon Game 判断凸边形

点击打开链接 Problem 2148 Moon Game Accept: 512    Submit: 1419 Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem Description Fat brother and Maze are playing a kind of special (hentai) game in the clearly blue sky which we can just consider as a k

FZU 2148 Moon Game (枚举+几何)

 Problem 2148 Moon Game Accept: 403    Submit: 1126Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem Description Fat brother and Maze are playing a kind of special (hentai) game in the clearly blue sky which we can just consider as a kind of

FZU 2148 Moon Game

Moon Game Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice FZU 2148 Description Fat brother and Maze are playing a kind of special (hentai) game in the clearly blue sky which we can just consider as

FZU_ Problem 2148 Moon Game

 Problem 2148 Moon Game Accept: 386    Submit: 1080 Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem Description Fat brother and Maze are playing a kind of special (hentai) game in the clearly blue sky which we can just consider as a kind of

计算几何 : 凸包学习笔记 --- Graham 扫描法

凸包 (只针对二维平面内的凸包) 一.定义 简单的说,在一个二维平面内有n个点的集合S,现在要你选择一个点集C,C中的点构成一个凸多边形G,使得S集合的所有点要么在G内,要么在G上,并且保证这个凸多边形的面积最小,我们要求的就是这个C集合. 二.算法 求凸包的算法很多,常用的有两种: 1.  Graham扫描法,运行时间为O(nlgn). 2.  Jarvis步进法,运行时间为O(nh),h为凸包中的顶点数. 这里主要讨论第一种算法:Graham扫描法 Graham扫描法: 基本思想:使用一个栈