【BZOJ3747】[POI2015]Kinoman 线段树

【BZOJ3747】[POI2015]Kinoman

Description

共有m部电影,编号为1~m,第i部电影的好看值为w[i]。

在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部。

你可以选择l,r(1<=l<=r<=n),并观看第l,l+1,…,r天内所有的电影。如果同一部电影你观看多于一次,你会感到无聊,于是无法获得这部电影的好看值。所以你希望最大化观看且仅观看过一次的电影的好看值的总和。

Input

第一行两个整数n,m(1<=m<=n<=1000000)。

第二行包含n个整数f[1],f[2],…,f[n](1<=f[i]<=m)。

第三行包含m个整数w[1],w[2],…,w[m](1<=w[j]<=1000000)。

Output

输出观看且仅观看过一次的电影的好看值的总和的最大值。

Sample Input

9 4
2 3 1 1 4 1 2 4 1
5 3 6 6

Sample Output

15
样例解释:
观看第2,3,4,5,6,7天内放映的电影,其中看且仅看过一次的电影的编号为2,3,4。

题解:还是用到这一个思路:每个子串都是一个前缀的后缀,那么我们枚举每个前缀,然后用线段树维护它的每个后缀的答案即可。

具体地,如果当前位置是i,i的前缀是pre[i],那么在(pre[i],i]中的后缀的和都会加上w;还要减掉原来pre[i]的权值,即在(pre[pre[i]],pre[i]]里的后缀都要减去w。再用线段树查询最大值即可。

#include <cstdio>
#include <iostream>
#include <cstring>
#define lson x<<1
#define rson x<<1|1
using namespace std;
typedef long long ll;
const int maxn=1000010;
int n,m;
ll ans;
int w[maxn],f[maxn],pre[maxn],last[maxn];
ll s[maxn<<2],tag[maxn<<2];
void updata(int l,int r,int x,int a,int b,ll val)
{
	if(a<=l&&r<=b)
	{
		s[x]+=val,tag[x]+=val;
		return ;
	}
	if(tag[x])	s[lson]+=tag[x],tag[lson]+=tag[x],s[rson]+=tag[x],tag[rson]+=tag[x],tag[x]=0;
	int mid=(l+r)>>1;
	if(a<=mid)	updata(l,mid,lson,a,b,val);
	if(b>mid)	updata(mid+1,r,rson,a,b,val);
	s[x]=max(s[lson],s[rson]);
}
inline int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<‘0‘||gc>‘9‘)	{if(gc==‘-‘)f=-f;	gc=getchar();}
	while(gc>=‘0‘&&gc<=‘9‘)	ret=ret*10+gc-‘0‘,gc=getchar();
	return ret*f;
}
int main()
{
	n=rd(),m=rd();
	int i;
	for(i=1;i<=n;i++)	f[i]=rd(),pre[i]=last[f[i]],last[f[i]]=i;
	for(i=1;i<=m;i++)	w[i]=rd();
	for(i=1;i<=n;i++)
	{
		updata(1,n,1,pre[i]+1,i,w[f[i]]);
		if(pre[i])	updata(1,n,1,pre[pre[i]]+1,pre[i],-w[f[i]]);
		ans=max(ans,s[1]);
	}
	printf("%lld",ans);
	return 0;
}
时间: 2024-09-30 11:47:45

【BZOJ3747】[POI2015]Kinoman 线段树的相关文章

[bzoj3747][POI2015]Kinoman_线段树

Kinoman bzoj-3747 POI-2015 题目大意:有m部电影,第i部电影的好看值为w[i].现在放了n天电影,请你选择一段区间l~r使得l到r之间的好看值总和最大.特别地,如果同一种电影放了两遍及以上,那么这种电影的好看值将不会被获得. 注释:$1\le m \le n \le 10^6$. 想法:和rmq problem类似的,我们处理出每一个位置pos右边第一个和pos上电影种类相同的位置nxt[pos].然后,我从1-n扫一遍,每次讲l+1到nxt[l]-1之间的值加上w[a

BZOJ 3747: [POI2015]Kinoman( 线段树 )

线段树... 我们可以枚举左端点 , 然后用线段树找出所有右端点中的最大值 . ----------------------------------------------------------------------------------------- #include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #define rep( i , n ) for( i

3747: [POI2015]Kinoman|线段树

枚举左区间线段树维护最大值 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<vector> #include<cmath> #include<queue> #include<set> #include<map> #define ll l

【BZOJ-3747】Kinoman 线段树

3747: [POI2015]Kinoman Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 715  Solved: 294[Submit][Status][Discuss] Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l<=r<=n),并观看第l,l+1,…,r天内所有的电影.如果同一部电影你观看多

【bzoj3747】Kinoman[POI2015](线段树)

题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3747 对于这种题,考虑固定区间的右端点为r,设区间左端点为l能取得的好看值总和为a[l],那么就相当于当r取不同取值时所有al的最大值. 设last[i]表示第i部电影上一次出现的位置,当右端点r右移1位时,因为只有看了一遍的电影能获取好看值,所以能取得f[r]的好看值的al只能是在last[r]~r这个区间.因此每次右移时,last[last[r]]+1~last[r]减去w[f[r

BZOJ 3747 POI 2015 Kinoman 线段树

题目大意:给出电影院的放映电影顺序,一个电影只有看过一次的时候会获得电影的权值.没看过或者看两次或以上都不能获得权值.问看连续区间的电影能够获得的最大权值是多少. 思路:利用线段树维护前缀和.将出现第一次的地方的权值加上那部电影的权值,第二次出现的时候权值减去那部电影的权值.枚举起点,先更新答案,然后在当前节点减去权值的二倍,然后再在下一次出现的地方加上权值(我感觉我没说明白,总之看代码吧... CODE: #include <cstdio> #include <cstring>

bzoj3747 [POI2015]Kinoman

Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l<=r<=n),并观看第l,l+1,…,r天内所有的电影.如果同一部电影你观看多于一次,你会感到无聊,于是无法获得这部电影的好看值.所以你希望最大化观看且仅观看过一次的电影的好看值的总和. Input 第一行两个整数n,m(1<=m<=n<=1000000). 第二行包含n个整数f[1]

[POI2015]KIN (线段树)

题目链接 Solution 线段树. 观察题目可以得到一个小 \(trick\) : 对于任意一个节点 \(i\) ,那么和它颜色相同的上一个节点 \(pre[i]\),肯定不会放在一个区间. 于是考虑对于每一个节点计算它可以献出贡献的区间. 先 \(O(n)\) 扫出每一个点的 \(pre\) . 然后从左往右,一次将节点可以贡献的范围即 \([pre_i~,~nxt_i)\). 同时将同颜色的上一个节点贡献删除. 然后线段树统计全局最大值即可. Code #include<bits/stdc

【线段树】bzoj3747 [POI2015]Kinoman

题解:http://www.cnblogs.com/zyfzyf/p/4105184.html 1 #include<cstdio> 2 #include<algorithm> 3 #include<cmath> 4 using namespace std; 5 #define lson rt<<1,l,m 6 #define rson rt<<1|1,m+1,r 7 int Num,CH[12],f,c; 8 inline void R(int