HDU 3507 Print Article(斜率优化DP)

题目链接

题意 : 一篇文章有n个单词,如果每行打印k个单词,那这行的花费是,问你怎么安排能够得到最小花费,输出最小花费。

思路 :
一开始想的简单了以为是背包,后来才知道是斜率优化DP,然后看了网上的资料,看得还挺懂的,不过我觉得如果以后真遇到斜率DP,要推起来肯定不简单。。。。。

网上资料1

网上资料2


 1 #include <iostream>
2 #include <stdio.h>
3
4 using namespace std;
5
6 int q[500005],dp[500005],sum[500005] ;
7 int head,tail,m,n ;
8
9 // dp[i]= min{ dp[j]+M+(sum[i]-sum[j])^2 };
10 int getDP(int i,int j)
11 {
12 return dp[j] + m + (sum[i]-sum[j]) * (sum[i]-sum[j]) ;
13 }
14 int getUP(int j,int k)//求yj-yk
15 {
16 return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]) ;
17 }
18 int getDOWM(int j,int k)//求xj-xk
19 {
20 return 2*sum[j]-2*sum[k] ;
21 }
22
23 int main()
24 {
25 while(~scanf("%d %d",&n,&m))
26 {
27 for(int i = 1 ; i <= n ; i++)
28 scanf("%d",&sum[i]) ;
29 sum[0] = dp[0] = 0 ;
30 for(int i = 1 ; i <= n ; i++)
31 sum[i] += sum[i-1] ;
32 head = tail= 0 ;
33 q[tail++] = 0 ;
34 for(int i = 1 ; i <= n ; i++)
35 {
36 //如果满足g[j,k]=yj-jk/xj-xk<sum[i]代表这j的决策比k的决策要更优,所以k可以直接淘汰了。
37 while(head+1 < tail && getUP(q[head+1],q[head]) <= sum[i] * getDOWM(q[head+1],q[head]))
38 head++ ;
39 dp[i] = getDP(i,q[head]) ;
40 //g[i,j]<g[j,k],那么j点便永远不可能成为最优解,可以直接将它踢出我们的最优解集。
41 while(head+1 < tail && getUP(i,q[tail-1]) * getDOWM(q[tail-1],q[tail-2]) <= getUP(q[tail-1],q[tail-2]) * getDOWM(i,q[tail-1]))
42 tail-- ;
43 q[tail++] = i ;
44 }
45 printf("%d\n",dp[n]) ;
46 }
47 return 0;
48 }

时间: 2024-11-05 13:46:54

HDU 3507 Print Article(斜率优化DP)的相关文章

hdu 3507 Print Article —— 斜率优化DP

题目:http://acm.hdu.edu.cn/showproblem.php?pid=3507 设 f[i],则 f[i] = f[j] + (s[i]-s[j])*(s[i]-s[j]) + m 即 f[j] + s[j]*s[j] = 2*s[i]*s[j] + f[i] - s[i]*s[i] - m 于是维护下凸包即可: 写成 double 的 slp 总是不对,把分母乘到对面就对了... 代码如下: #include<iostream> #include<cstdio>

HDU 3507 Print Article 斜率优化

Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 4810    Accepted Submission(s): 1451 Problem Description Zero has an old printer that doesn't work well sometimes. As it is antique

hdu3507 Print Article[斜率优化dp入门题]

Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 11761    Accepted Submission(s): 3586 Problem Description Zero has an old printer that doesn't work well sometimes. As it is antiqu

[hdu3507 Print Article]斜率优化dp入门

题意:需要打印n个正整数,1个数要么单独打印要么和前面一个数一起打印,1次打印1组数的代价为这组数的和的平方加上常数M.求最小代价. 思路:如果令dp[i]为打印前i个数的最小代价,那么有 dp[i]=min(dp[j]+(sum[i]-sum[j])2+M),j<i 直接枚举转移是O(n2)的,然而这个方程可以利用斜率优化将复杂度降到O(n). 根据斜率优化的一般思路,对当前考虑的状态i,考虑决策j和k(j<k),如果k比j优,那么根据转移方程有:dp[k]+(sum[i]-sum[k])2

HDU 3507 Print Article (斜率DP)

题意:要输出N个数字a[N],输出的时候可以连续连续的输出,每连续输出一串,它的费用是 "这串数字和的平方加上一个常数M". 析:这个题很容易想到DP方程dp[i] = min{dp[j] + M + (sum[i]-sum[j])^2},但是很明显是O(n^2),TLE是必然的,所以要进行优化. 假设 i > j > k ,并且 j 要比 k 好,那么就是 dp[j] + M + (sum[i]-sum[j])^2 < dp[k] + M + (sum[i]-sum

Print Article /// 斜率优化DP oj26302

题目大意: 经典题 数学分析 G(a,b)<sum[i]时 a优于b G(a,b)<G(b,c)<sum[i]时 b必不为最优 #include <bits/stdc++.h> #define N 500005 using namespace std; int n,m,dp[N],deq[N],sum[N]; // deq[]为单调队列 sum[]为数组的前缀和 int DP(int i,int j) { return dp[j]+m+(sum[i]-sum[j])*(sum

HDU3507 Print Article (斜率优化DP基础复习)

传送门 大意:打印一篇文章,连续打印一堆字的花费是这一堆的和的平方加上一个常数M. 首先我们写出状态转移方程 :f[i]=f[j]+(sum[i]?sum[j])2+M; 设 j 优于 k. 那么有 f[j]+(sum[i]?sum[j])2<f[k]+(sum[i]?sum[k])2 移项得出 (f[j]+sum[j]2)?(f[k]+sum[j]2)2?(sum[j]+sum[k])<sum[i] 这就是一个很理想的斜率式了. #include<cstdio> #include

HDU 3507 单调队列 斜率优化

斜率优化的模板题 给出n个数以及M,你可以将这些数划分成几个区间,每个区间的值是里面数的和的平方+M,问所有区间值总和最小是多少. 如果不考虑平方,那么我们显然可以使用队列维护单调性,优化DP的线性方法来做,但是该题要求的是区间和的平方,于是要转换单调的计算方法为斜率,也就是凸线. 其他就是最基本的单调DP /** @Date : 2017-09-04 15:39:05 * @FileName: HDU 3507 单调队列 斜率优化 DP.cpp * @Platform: Windows * @

HDU 3507 Print Article (斜率优化)

HDU 3507 Print Article (斜率优化) ACM 题目地址: HDU 3507 Print Article 题意: 给定一个长度为n的序列,和一个常数m,我们可以将序列分成随意段,每段的权值为sum(arr[i]) + C(x<=i<=y),求一种划分方法使得整个序列的权值最小 分析: from:亟隐's blog f[i]=min(f[k]+(sum(i)-sum(k))^2 )+m = f[k]+sum^2(i)+sum^2(k)-2*sum(i)*sum(k)+m. 也

HDU 3507 Print Article(斜率DP优化)

Problem Description Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate t