A simple simulation problem.
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 330 Accepted Submission(s): 132
Problem Description
There are n types of cells in the lab, numbered from 1 to n. These cells are put in a queue, the i-th cell belongs to type i. Each time I can use mitogen to double the cells in the interval [l, r]. For instance, the original queue
is {1 2 3 3 4 5}, after using a mitogen in the interval [2, 5] the queue will be {1 2 2 3 3 3 3 4 4 5}. After some operations this queue could become very long, and I can’t figure out maximum count of cells of same type. Could you help me?
Input
The first line contains a single integer t (1 <= t <= 20), the number of test cases.
For each case, the first line contains 2 integers (1 <= n,m<= 50000) indicating the number of cell types and the number of operations.
For the following m lines, each line represents an operation. There are only two kinds of operations: Q and D. And the format is:
“Q l r”, query the maximum number of cells of same type in the interval [l, r];
“D l r”, double the cells in the interval [l, r];
(0 <= r – l <= 10^8, 1 <= l, r <= the number of all the cells)
Output
For each case, output the case number as shown. Then for each query "Q l r", print the maximum number of cells of same type in the interval [l, r].
Take the sample output for more details.
Sample Input
1 5 5 D 5 5 Q 5 6 D 2 3 D 1 2 Q 1 7
Sample Output
Case #1: 2 3
Source
2014 Multi-University Training Contest 10
题意:D:在区间内的所有点个数都变成2倍,总区间变长,Q:询问区间内的同一个数最多出现的次数。
#include<stdio.h> #define N 50005 #define ll __int64 struct nn { ll sum,maxlen,mulit;//分别代表当前节点区间总个数,同一个数最多个数,子节点需更新的倍数 }tree[N*3]; void builde(ll l,ll r,int k) { tree[k].sum=r-l+1; tree[k].maxlen=1; tree[k].mulit=1; if(l==r)return ; ll m=(l+r)/2; builde(l,m,k*2); builde(m+1,r,k*2+1); } ll MAX(ll a,ll b){return a>b?a:b;} void setchilde(int k) { tree[k*2].mulit*=tree[k].mulit; tree[k*2].sum*=tree[k].mulit; tree[k*2].maxlen*=tree[k].mulit; tree[k*2+1].mulit*=tree[k].mulit; tree[k*2+1].sum*=tree[k].mulit; tree[k*2+1].maxlen*=tree[k].mulit; tree[k].mulit=1; } void set(ll l,ll r,int k,ll L,ll R,ll suml) { ll m=(l+r)/2; if(L<=suml+1&&suml+tree[k].sum<=R) { tree[k].maxlen*=2; tree[k].mulit*=2; tree[k].sum*=2; return ; } else if(l==r) { if(tree[k].sum+suml>=R&&suml+1>=L) tree[k].sum=tree[k].sum+suml-R+(R-suml)*2; else if(tree[k].sum+suml>=R&&suml+1<=L) tree[k].sum=tree[k].sum+suml-R+L-suml-1+(R-L+1)*2; else if(tree[k].sum+suml<=R&&suml+1<=L) tree[k].sum=(tree[k].sum+suml-L+1)*2+L-suml-1; tree[k].maxlen=tree[k].sum; return ; } if(tree[k].mulit>1) setchilde(k); ll sum=tree[k*2].sum; if(suml+sum>=L)set(l,m,k*2,L,R,suml); if(suml+sum+1<=R)set(m+1,r,k*2+1,L,R,suml+sum); tree[k].sum=tree[k*2].sum+tree[k*2+1].sum; tree[k].maxlen=MAX(tree[k*2].maxlen,tree[k*2+1].maxlen); } ll query(ll l,ll r,int k,ll L,ll R,ll suml) { ll m=(l+r)/2, maxlen; if(suml+1>=L&&tree[k].sum+suml<=R) { return tree[k].maxlen; } else if(l==r) { if(tree[k].sum+suml>=R&&suml+1>=L) maxlen=R-suml; else if(tree[k].sum+suml>=R&&suml+1<=L) maxlen=R-L+1; else if(tree[k].sum+suml<=R&&suml+1<=L) maxlen=tree[k].sum+suml-L+1; return maxlen; } if(tree[k].mulit>1) setchilde(k); if(tree[k*2].sum+suml>=R) maxlen=query(l,m,k*2,L,R,suml); else if(tree[k*2].sum+1+suml<=L)maxlen=query(m+1,r,k*2+1,L,R,tree[k*2].sum+suml); else maxlen= MAX(query(l,m,k*2,L,R,suml),query(m+1,r,k*2+1,L,R,tree[k*2].sum+suml)); return maxlen; } int main() { ll n,m,L,R,t,tt=0; char s[5]; scanf("%I64d",&t); while(t--) { scanf("%I64d%I64d",&n,&m); builde(1,n,1); printf("Case #%I64d:\n",++tt); while(m--) { scanf("%s%I64d%I64d",s,&L,&R); if(s[0]=='D')set(1,n,1,L,R,0); else printf("%I64d\n",query(1,n,1,L,R,0)); } } }