(转)结构体在内存中的对其规则

参考的网址:http://blog.csdn.net/grantxx/article/details/7577730

一个结构体变量定义完之后,其在内存中的存储并不等于其所包含元素的宽度之和。

例一:

#include <iostream>

using namespace std;

struct X

{

char a;

int b;

double c;

}S1;

void main()

{

cout << sizeof(S1) << endl;

cout << sizeof(S1.a) << endl;

cout << sizeof(S1.b) << endl;

cout << sizeof(S1.c) << endl;

}

比如例一中的结构体变量S1定义之后,经测试,会发现sizeof(S1)= 16,其值不等于sizeof(S1.a) = 1、sizeof(S1.b) = 4和 sizeof(S1.c) = 8三者之和,这里面就存在存储对齐问题。

    原则一:结构体中元素是按照定义顺序一个一个放到内存中去的,但并不是紧密排列的。从结构体存储的首地址开始,每一个元素放置到内存中时,它都会认为内存是以它自己的大小来划分的,因此元素放置的位置一定会在自己宽度的整数倍上开始(以结构体变量首地址为0计算)。

比如此例,首先系统会将字符型变量a存入第0个字节(相对地址,指内存开辟的首地址);然后在存放整形变量b时,会以4个字节为单位进行存储,由于第一个四字节模块已有数据,因此它会存入第二个四字节模块,也就是存入到4~8字节;同理,存放双精度实型变量c时,由于其宽度为8,其存放时会以8个字节为单位存储,也就是会找到第一个空的且是8的整数倍的位置开始存储,此例中,此例中,由于头一个8字节模块已被占用,所以将c存入第二个8字节模块。整体存储示意图如图1所示。

考虑另外一个实例。

例二:

struct X

{

char a;

double b;

int c;

}S2;

在例二中仅仅是将double型的变量和int型的变量互换了位置。测试程序不变,测试结果却截然不同,sizeof(S2)=24,不同于我们按照原则一计算出的8+8+4=20,这就引出了我们的第二原则。

   

 

    原则二:在经过第一原则分析后,检查计算出的存储单元是否为所有元素中最宽的元素的长度的整数倍,是,则结束;若不是,则补齐为它的整数倍。

例二中,我们分析完后的存储长度为20字节,不是最宽元素长度8的整数倍,因此将它补齐到8的整数倍,也就是24。这样就没问题了。其存储示意图如图2所示。

掌握了这两个原则,就能够分析所有数据存储对齐问题了。再来看几个例子,应用以上两个原则来判断。

例三:

struct X

{

double a;

char b;

int c;

}S3;

首先根据原则一来分析。按照定义的顺序,先存储double型的a,存储在第0~7个字节;其次是char型的b,存储在第8个字节;接下来是int型的c,顺序检查后发现前面三个四字节模块都被占用,因此存储在第4个四字节模块,也就是第12~15字节。按照第一原则分析得到16个字节,16正好是最宽元素a的宽度8的整数倍,因此结构体变量S3所占存储空间就是16个字节。存储结构如图3所示。

例四:

struct X

{

double a;

char b;

int c;

char d;

}S4;

仍然首先按照第一原则分析,得到的字节数为8+4+4+1=17;再按照第二原则补齐,则结构体变量S4所占存储空间为24。存储结构如图4所示:

例五:

struct X

{

double a;

char b;

int c;

char d;

int e;

}S5;

同样结合原则一和原则二分析,可知在S4的基础上在结构体内部变量定义最后加入一个int型变量后,结构体所占空间并未增加,仍为24。存储结构示意图如图5所示。

例六:

如果将例五中加入的变量e放到第一个定义的位置,则情况就不同了。结构体所占存储空间会变为32。其存储结构示意图如图6所示。

struct X

{

int e;

double a;

char b;

int c;

char d;

}S6;

补充:前面所介绍的都是元素为基本数据类型的结构体,那么含有指针、数组或是其它结构体变量或联合体变量时该如何呢?

1.包含指针类型的情况。只要记住指针本身所占的存储空间是4个字节就行了,而不必看它是指向什么类型的指针。

例七:

struct X              struct Y               struct Z

{                     {                      {

char *a;              int *b;                 double *c;

};                     };                     };

经测试,可知sizeof(X)、sizeof(Y)和sizeof(Z)的值都为4。

2.含有构造数据类型(数组、结构体和联合体)的情况。首先要明确的是计算存储空间时要把构造体看作一个整体来为其开辟存储空间;其次要明确的是在最后补齐时是按照所有元素中的基本数据类型元素的最长宽度来补齐的,也就是说虽然要把构造体看作整体,但在补齐的时候并不会按照所含结构体所占存储空间的长度来补齐的(即使它可能是最长的)。

例八:

struct X

{

char a;

int b;

double c;

};

struct Y

{

char a;

X b;

};

经测试,可知sizeof(X)为16,sizeof(Y)为24。即计算Y的存储长度时,在存放第二个元素b时的初始位置是在double型的长度8的整数倍处,而非16的整数倍处,即系统为b所分配的存储空间是第8~23个字节。

如果将Y的两个元素char型的a和X型的b调换定义顺序,则系统为b分配的存储位置是第0~15个字节,为a分配的是第16个字节,加起来一共17个字节,不是最长基本类型double所占宽度8的整数倍,因此要补齐到8的整数倍,即24。测试后可得sizeof(Y)的值为24。

由于结构体所占空间与其内部元素的类型有关,而且与不同类型元素的排列有关,因此在定义结构体时,在元素类型及数量确定之后,我们还应该注意一下其内部元素的定义顺序。

时间: 2024-10-12 23:39:49

(转)结构体在内存中的对其规则的相关文章

结构体在内存中的对其规则

一个结构体变量定义完之后,其在内存中的存储并不等于其所包含元素的宽度之和. 例一: #include <iostream> using namespace std; struct X { char a; int b; double c; }S1; void main() { cout << sizeof(S1) << endl; cout << sizeof(S1.a) << endl; cout << sizeof(S1.b) &l

结构体在内存中的存储方式

结构体在内存中如何存储? 遵循结构体对齐规则: 1.首先要知道默认对齐数:VS 中 8   Linux 中4 2.第一个成员放到0偏移处 3.后面所有的成员都放到对齐数(本身和默认对齐数的较小值)的倍数处偏移 4.结构体总大小为所有对齐数中最大对齐数的倍数 Eg: 运行结果为 24 图中可以看出内存有浪费,而我们将小的成员放一起可以节省资源 减少浪费. 上例可以改为: int i: char c: double d: 这样总大小只需16 节省浪费. 空的结构体类型大小为1,创建对象需要开辟空间,

结构体在内存中所占字节大小计算

作者 :卿笃军 今天上课,老师给我们演示了一下,计算结构体在内存中所占的字节大小.开始给了我们几个例子,然后要我们自己摸索出规律. 注:以下测试全是在win7_64bit  Devcpp 5.5.3环境下测试的.(char 1字节,int 4字节, double 8字节). 也许:你可能认为下面这个答案是 1+4 = 5   (×) #include <stdio.h> struct node { char a; int b; }; int main() { struct node QING;

C语言结构体在内存中的存储情况探究------内存对齐

条件(先看一下各个基本类型都占几个字节): void size_(){ printf("char类型:%d\n", sizeof(char)); printf("int类型:%d\n", sizeof(int)); printf("float类型:%d\n", sizeof(float)); printf("double类型:%d\n", sizeof(double)); return; } 结果: 先来一下, 这个结构体在内

C语言结构体占用空间内存大小解析

结构体的数据类型的有点我们就不啰嗦了,直接来看相同数据结构体的几种书写的格式吧. 格式一: [cpp] view plain copy 01.struct tagPhone 02.{ 03.     char   A; 04.     int    B; 05.     short  C; 06.}Phone; [cpp] view plain copy 格式二: [cpp] view plain copy 01.struct tagPhone 02.{ 03.     char   A; 04

3.c语音结构体成员内存对齐详解

一.关键一点 最关键的一点:结构体在内存中是一个矩形,而不是一个不规则形状 二.编程实战 1 #include <stdlib.h> 2 #include <stdio.h> 3 4 struct A 5 { 6 int a; 7 char b; 8 }; 9 10 int main() 11 { 12 struct A a; 13 a.a = 1; 14 a.b = 1; 15 printf("%p\n", &a); 16 17 system(&quo

逆向知识第十四讲,(C语言完结)结构体在汇编中的表现形式

一丶了解什么是结构体,以及计算结构体成员的对其值以及总大小(类也是这样算) 结构体的特性 1.结构体(struct)是由一系列具有相同类型或不同类型的数据构成的数据集合 2.在C语言中,结构体(struct)指的是一种数据结构,是C语言中聚合数据类型(aggregate data type)的一类. 3. 结构体可以被声明为变量.指针或数组等,用以实现较复杂的数据结构.结构体同时也是一些元素的集合,这些元素称为结构体的成员(member),且这些成员可以为不同的类型,成员一般用名字访问. 高级代

VC中结构体的内存布局

看了 VC++中内存对齐 这篇文章,感觉说复杂了,根据我的总结,要算出结构体的内存大小和偏移量,只要清楚结构体各成员的内存布局就行了,下面介绍一下我总结的规则,有不对之处,欢迎回复. 1.实际PACK值根据默认值.声明值.成员值的最小值得到.默认值在32位系统中为4,声明值则是使用#pragma pack(n)声明的值,如没有则忽略,成员最小值则是指结构体中最大的一个数据类型的大小,如int为4,short为2...,举例: #pragma pack(8) struct sta { char a

结构体的内存空间分配及字节对齐

关于内存对齐 一: 1.什么是内存对齐 假设我们同时声明两个变量: char a; short b; 用&(取地址符号)观察变量a, b的地址的话,我们会发现(以16位CPU为例): 如果a的地址是0x0000,那么b的地址将会是0x0002或者是0x0004. 那么就出现这样一个问题:0x0001这个地址没有被使用,那它干什么去了?答案就是它确实没被使用.因为CPU每次都是从以2字节(16位CPU)或是4字节(32位CPU)的整数倍的内存地址中读进数据的.如果变量b的地址是0x0001的话,那