如何做集成,其实特别简单,网上其实就是教程。
http://blog.csdn.net/fighting_one_piece/article/details/40667035 看这里就成。 我用的是第一种集成。。
做的时候,出现了各种问题。 大概从从2014.12.17 早晨5点搞到2014.12.17晚上18点30
总结起来其实很简单,但做的时候搞了许久啊啊啊!!!! 这样的事情,吃一堑长一智吧
问题1、 需要引用各种包,这些包要打入你的JAR中, 因为用的是spark on yarn模式,所以如果不打进去,在集群中是找不到依赖包的!!! 去哪找呢? 直接去search.maven.org找。。
问题2:因为搭建的spark on yarn集群,所以监听时只能监听localhost,不然如果你指定了ip,那么非该IP下的结点,就会因为监听不到而出现了问题
问题3:cdh中的flume的启动,你要去find / -name flume.conf ,找一下,然后找到最新的,与cloudera manager配置文件一样的那么,flume启动时就用这个配置文件
问题4:不要直接用集群,先用单点测试一下。。因为单点测试一下后会发现各种问题。 解决后再去集群测试
问题5:一定要注意版本! cdh5.2中spark的版本是1.1.0,而我用的插件一直是1.1.1版本的!!! 啊, 为这事儿,我从中午搞到现在。 这个要吃一堑长一智啦!!!
spark代码如下:
package com.hark import java.io.File import org.apache.spark.SparkConf import org.apache.spark.storage.StorageLevel import org.apache.spark.streaming.flume.FlumeUtils import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.StreamingContext._ /** * Created by Administrator on 2014-12-16. */ object SparkStreamingFlumeTest { def main(args: Array[String]) { //println("harkhark") val path = new File(".").getCanonicalPath() //File workaround = new File("."); System.getProperties().put("hadoop.home.dir", path); new File("./bin").mkdirs(); new File("./bin/winutils.exe").createNewFile(); //val sparkConf = new SparkConf().setAppName("HdfsWordCount").setMaster("local[2]") val sparkConf = new SparkConf().setAppName("HdfsWordCount") // Create the context val ssc = new StreamingContext(sparkConf, Seconds(20)) //val hostname = "127.0.0.1" val hostname = "localhost" val port = 2345 val storageLevel = StorageLevel.MEMORY_ONLY val flumeStream = FlumeUtils.createStream(ssc, hostname, port, storageLevel) flumeStream.count().map(cnt => "Received " + cnt + " flume events." ).print() ssc.start() ssc.awaitTermination() } }
flume配置文件如下:
# Please paste flume.conf here. Example: # Sources, channels, and sinks are defined per # agent name, in this case ‘tier1‘. tier1.sources = source1 tier1.channels = channel1 tier1.sinks = sink1 # For each source, channel, and sink, set # standard properties. tier1.sources.source1.type = exec tier1.sources.source1.command = tail -F /opt/data/test3/123 tier1.sources.source1.channels = channel1 tier1.channels.channel1.type = memory #tier1.sinks.sink1.type = logger tier1.sinks.sink1.type = avro tier1.sinks.sink1.hostname = localhost tier1.sinks.sink1.port = 2345 tier1.sinks.sink1.channel = channel1 # Other properties are specific to each type of yhx.hadoop.dn01 # source, channel, or sink. In this case, we # specify the capacity of the memory channel. tier1.channels.channel1.capacity = 100
spark启动命令如下:
spark-submit --driver-memory 512m --executor-memory 512m --executor-cores 1 --num-executors 3 --class com.hark.SparkStreamingFlumeTest --deploy-mode cluster --master yarn /opt/spark/SparkTest.jar
flume启动命令如下:
flume-ng agent --conf /opt/cloudera-manager/run/cloudera-scm-agent/process/585-flume-AGENT --conf-file /opt/cloudera-manager/run/cloudera-scm-agent/process/585-flume-AGENT/flume.conf --name tier1 -Dflume.root.logger=INFO,console
时间: 2024-12-27 23:59:48