Android多线程编程之Handler篇(消息机制)

Android多线程编程之Handler篇(消息机制)

Android的消息机制主要是指Handler的运行机制,Handler的运行需要底层的MessageQueue和Looper的支撑。

  • MessageQueue

    消息队列,以队列的形式(实为单链表结构)对外提供插入和删除的工作,

  • Looper

    以无限循环的形式不断获取MessageQueue中的消息,有则处理,无则等待。

  • ThreadLocal

ThreadLocal可以在不同的线程互不干扰的存储并提供数据,通过ThreadLocal可以很方便的获取每个线程的Looper

为什么要异步访问UI?

Android规定UI操作只能在主线程中执行,子线程执行UI操作则会抛出异常,在ViewRootImpl有如下方法:

    void checkThread() {
        if (mThread != Thread.currentThread()) {
            throw new CalledFromWrongThreadException(
                    "Only the original thread that created a view hierarchy can touch its views.");
        }
    }

显然对于UI这类耗时操作我们不可能全部放在主线程中执行,那么就要采用异步的方式。

系统为何不允许在子线程去访问UI?

原因很简单,Android的UI线程是线程不安全的

为什么不采用加锁的方式处理UI线程?

- 会增加UI访问的逻辑复杂度

- 降低UI访问效率

至此,我们对异步消息的处理机制和必要性有了一个简单的了解

异步处理的五种基本方式

假设有如下需求:在子线程中更新TextView的文本显示

实现方式一:

        mHandler = new Handler() {
            @Override
            public void handleMessage(Message msg) {
                if (msg.what == 1) {
                    tv.setText(msg.obj.toString());
                }
            }
        };

        tv = (TextView) findViewById(R.id.tv);
        new Thread(new Runnable() {
            @Override
            public void run() {
                Message msg = new Message();
                msg.what = 1;
                msg.obj = "神荼";
                mHandler.sendMessage(msg);
            }
        }).start();

实现方式二:

        mHandler = new Handler();
        mHandler.post(new Runnable() {
            @Override
            public void run() {
                tv.setText("神荼");
            }
        });

实现方式三:

        runOnUiThread(new Runnable() {
            @Override
            public void run() {
                tv.setText("神荼");
            }
        });

实现方式四:

        tv.post(new Runnable() {
            @Override
            public void run() {
                tv.setText("神荼");
            }
        });

实现方式五:

开启加速,Google异步处理方案之AsyncTask(详情请关注我的下一篇Android多线程编程之AsyncTask篇)

上述代码都实现了同样的处理效果,但实现上却略有不同,预知详细原理,请跟进代码分析。



首先来看一下Handler的工作流程(来自郭神):

这个图清晰明白的展示出了handler异步消息处理的整个流程,我想各位看懂这个应该都是没问题,为了搞清楚内部的实现原理,我们就从handle发送消息的起点谈起,,

MessageQueue

在第一种方式中,我们通过handle.sendMessage()方法发送一个Message对象,这个msg对象的第一站即MessageQueue,MessageQueue主要包含两个操作:插入(enqueueMessage)和读取(next)

boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {

                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

上面的代码明显暴漏了这货维护的就是一个链表结构啊有木有,当该方法被调用时会向消息链表中插入新的消息对象。

再来看看next

Message next() {

        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                if (mQuitting) {
                    dispose();
                    return null;
                }

                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            pendingIdleHandlerCount = 0;

            nextPollTimeoutMillis = 0;
        }
    }

嗯,210-237行淋漓尽致的展现了msg是如何被取出并从链表中溢出的,没啥好说的,

Looper

我以前一直困惑Looper到底是个啥?是个类?还是个final类,不过这好像没啥意义啊…其实我们完全没必要知道它是啥,我们只要知道它对Handler形式的异步处理具有决定性的作用,实际上我们在创建Handler的时候必须伴随着两个方法的调用

  • Looper.prepare()

这里假设你已经了解ThreadLocal这货是干啥的了,基于此来看一下该方法的源码

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

看到某,如果当前线程存在已经与之具有“绑定关系”的Looper,那么通过本地sThreadLocal获取即可,否则新建一个,重点来了

Looper对象所“绑定”的线程也就是我们消息接收的线程

所以,你现在知道了,Looper.prepare()获取与所在线程对应的Looper对象,决定消息接收处。

  • Looper.loop()
public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn‘t called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            msg.target.dispatchMessage(msg);

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

这个玩的就更嗨了,先是获取MessageQueue对象,而后开启了自我轮回模式(无限循环),怎么轮回呢?看326行,从MessageQueue中不断地取出msg对象,然后将该msg对象分发传递出去(338),msg.target即为我们的handler对象,请注意,前方高能Handler源码解析开始…

Handler

接上面的msg.target.dispatchMessage(msg)该方法源码如下

public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

看到没,该方法首先会判断callback接口,若非空,直接处理即可,这也恰恰对应了我们的第二种异步实现方式(简单来说就是直接传递一个Runnable,该Runnable最后会在Looper线程运行),那么第三种方式呢,也很类似不是么?看代码

    public final void runOnUiThread(Runnable action) {
        if (Thread.currentThread() != mUiThread) {
            mHandler.post(action);
        } else {
            action.run();
        }
    }

看到某,就是第二种方式的封装版,而且省去了Handler的创建。

你可能要问了,mCallback是哪里冒出来野生奥特曼,干啥玩意的?

对应这个问题,我只能说,看代码

    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can‘t create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

很明显这货来自于Handler的构造方法(不止一个),408行已然说明一切,最后我们看到在dispatchMessage终究要执行终极方法handleMessage(msg),于是乎消息对象来到了我们早已写好的handleMessage()方法中并在你Looper“绑定”的线程执行(一般都是主线程啦啦啦)…


必须要补充的点之ThreadLocal

ThreadLocal是一个线程内部的数据存储类,通过该类可以在指定的线程中存储数据,当然也只能获取当前线程的存储数据

在Handler异步消息处理中我们每个线程都要指定自己的Looper对象,那么如果没有该类,我们可能需要较为麻烦的方式去管理这些Looper对象,如hash表存储等

一个简单的使用示例

    private ThreadLocal<Integer> mIntegerThreadLocal = new ThreadLocal<>();

        mIntegerThreadLocal.set(111);

        new Thread("Thread_1") {
            @Override
            public void run() {
                mIntegerThreadLocal.set(222);
                Log.d("TAG2", mIntegerThreadLocal.get().toString());
                Log.d("TAG", Thread.currentThread().getName());
            }
        }.start();

        new Thread("Thread_2") {
            @Override
            public void run() {
                mIntegerThreadLocal.set(333);
                Log.d("TAG3", mIntegerThreadLocal.get().toString());
                Log.d("TAG", Thread.currentThread().getName());
            }
        }.start();

        Log.d("TAG1", mIntegerThreadLocal.get().toString());
        Log.d("TAG", Thread.currentThread().getName());

输出:

显然,结果表明了同一个对象在不同的线程有着不同的值,再来看一下它内部的源码实现(以搞懂源码为目标)

首先是set方法

    public void set(T value) {
        Thread currentThread = Thread.currentThread();
        Values values = values(currentThread);
        if (values == null) {
            values = initializeValues(currentThread);
        }
        values.put(this, value);
    }

看到某,ThreadLocal能根据不同线程维护不同Values对象(Thread内部产生),进而存储获取不同的数据,更具体的可以自行查阅源码。

再来看下get

    public T get() {
        // Optimized for the fast path.
        Thread currentThread = Thread.currentThread();
        Values values = values(currentThread);
        if (values != null) {
            Object[] table = values.table;
            int index = hash & values.mask;
            if (this.reference == table[index]) {
                return (T) table[index + 1];
            }
        } else {
            values = initializeValues(currentThread);
        }

        return (T) values.getAfterMiss(this);
    }

和set类似,清楚明白不扯淡,就不多说了

必须要补充的点之主线程消息循环

聊了这么久,有人可能就问了,你说使用handler必须要调用Looper的prepare和loop方法,那么主线程(ActivityThread)并没有看到调用啊,你净扯犊子呢?

有此问的道友先息息火,关于这个问题其实很简单,Android已经为我们做好了封装,而且第一个方法调用的是Looper.prepareMainLooper()

    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

OK,到此为止我相信你应该是彻底搞懂了了Handler的异步消息机制,如果还有什么疑问欢迎下方留言,当然我建议你能抽点时间自己去一点点的去阅读分析handler的源码,这样才能真正深刻的理解并记忆。

时间: 2025-01-31 09:13:55

Android多线程编程之Handler篇(消息机制)的相关文章

Android多线程编程之AsyncTask

进程?线程? 进程是并发执行的程序在执行过程中分配和管理资源的基本单位,是一个动态的概念.每个进程都有自己的地址空间(进程空间).进程空间的大小与处理机位数有关.进程至少有5种基本状态:初始态,执行态,等待状态,就绪状态,终止状态. 在多用户环境下,一个服务器通常需要接受大量的不学定数量用户的并发请求,而为每一个请求都创建一个进程非常不明智,无论从系统资源开销方面还是响应用户请求的效率上来看.这也是多线程诞生的一个原因.线程是进程的一部分,一个没有线程的进程可以看做是单线程.线程也是CPU调度的

iOS多线程编程之NSThread的使用

目录(?)[-] 简介 iOS有三种多线程编程的技术分别是 三种方式的有缺点介绍 NSThread的使用 NSThread 有两种直接创建方式 参数的意义 PS不显式创建线程的方法 下载图片的例子 新建singeView app 线程间通讯 线程同步 线程的顺序执行 其他同步 1.简介: 1.1 iOS有三种多线程编程的技术,分别是: 1..NSThread 2.Cocoa NSOperation (iOS多线程编程之NSOperation和NSOperationQueue的使用) 3.GCD 

IOS 多线程编程之 NSThread 的使用

1.简介: IOS 多线程编程之 NSThread 的使用 1.1 IOS 有三种多线程编程的技术,分别是: 1..NSThread 2.Cocoa NSOperation (IOS 多线程编程之 NSOperation 和 NSOperationQueue 的使用) 3.GCD 全称:Grand Central Dispatch( IOS 多线程编程之 Grand Central Dispatch(GCD)介绍和使用) 这三种编程方式从上到下,抽象度层次是从低到高的,抽象度越高的使用越简单,也

iOS多线程编程之Grand Central Dispatch(GCD)介绍和使用

介绍: Grand Central Dispatch 简称(GCD)是苹果公司开发的技术.以优化的应用程序支持多核心处理器和其它的对称多处理系统的系统.这建立在任务并行运行的线程池模式的基础上的.它首次公布在Mac OS X 10.6 ,iOS 4及以上也可用. 设计: GCD的工作原理是:让程序平行排队的特定任务.依据可用的处理资源,安排他们在不论什么可用的处理器核心上运行任务. 一个任务能够是一个函数(function)或者是一个block. GCD的底层依旧是用线程实现,只是这样能够让程序

iOS多线程编程之NSOperation和NSOperationQueue的使用(转自容芳志专栏)

转自由http://blog.csdn.net/totogo2010/ 使用 NSOperation的方式有两种, 一种是用定义好的两个子类: NSInvocationOperation 和 NSBlockOperation. 另一种是继承NSOperation 如果你也熟悉Java,NSOperation就和java.lang.Runnable接口很相似.和Java的Runnable一样,NSOperation也是设计用来扩展的,只需继承重写NSOperation的一个方法main.相当与ja

Android多线程之图解Handler Looper MessageQueue Message

Android中的多线程可以有多种实现方式,前面我们已经讲过了封装程度较高异步任务(AnsyncTask),这一节我们来看看较为灵活的方式:Handler Looper MessageQueue Message. Message:用于线程之间传递信息,发送的消息放入目标线程的MessageQueue中. MessageQueue:用于简化线程之间的消息传递,MessageQueue接受发送端的Message,并作为消息处理端的输入源.每个线程只有一个实例. Handler:用于处理Message

Cocoa多线程编程之block与semaphore(信号量)

首先大家要了解 dispatch_queue 的运作机制及线程同步 我们可以将许多 blocks 用 dispatch_async 函数提交到 dispatch_queue ,如果类型是DISPATCH_QUEUE_SERIAL (串行),那么这些 block 是按照 FIFO (先入先出)的规则调度的,也就是说,先加入的先执行,后加入的一定后执行,但在如果类型是DISPATCH_QUEUE_CONCURRENT(并行),那么某一时刻就可能有多个 block 同时在执行. 这个时候,如果两个 b

【转载】iOS多线程编程之Grand Central Dispatch(GCD)介绍和使用

[转载]http://blog.csdn.net/totogo2010/article/details/8016129 iOS多线程编程之Grand Central Dispatch(GCD)介绍和使用 分类: iOS开发进阶2012-09-25 16:22 35382人阅读 评论(32) 收藏 举报 目录(?)[+] 介绍: Grand Central Dispatch 简称(GCD)是苹果公司开发的技术,以优化的应用程序支持多核心处理器和其他的对称多处理系统的系统.这建立在任务并行执行的线程

iOS 多线程编程之Grand Central Dispatch(GCD)

介绍: Grand Central Dispatch 简称(GCD)是苹果公司开发的技术,以优化的应用程序支持多核心处理器和其他的对称多处理系统的系统.这建立在任务并行执行的线程池模式的基础上的.它首次发布在Mac OS X 10.6 ,iOS 4及以上也可用. 设计: GCD的工作原理是:让程序平行排队的特定任务,根据可用的处理资源,安排他们在任何可用的处理器核心上执行任务. 一个任务可以是一个函数(function)或者是一个block. GCD的底层依然是用线程实现,不过这样可以让程序员不