hdu 3537(博弈,翻硬币)

题意:给定了每个正面朝上的硬币的位置,然后每次可以翻1,2,3枚硬币,并且最右边的硬币开始必须是正面朝上的。

分析:

约束条件6:每次可以翻动一个、二个或三个硬币。(Mock Turtles游戏)

初始编号从0开始。

当N==1时,硬币为:正,先手必胜,所以sg[0]=1.

当N==2时,硬币为:反正,先手必赢,先手操作后可能为:反反或正反,方案数为2,所以sg[1]=2。

当N==3时,硬币为:反反正,先手必赢,先手操作后可能为:反反反、反正反、正反正、正正反,方案数为4,所以sg[2]=4。

位置x:0  1  2  3  4   5    6   7    8     9  10  11  12  13  14...

sg[x]:  1  2  4  7  8  11
13
14  16  19  21  22  25  26  28…

看上去sg值为2x或者2x+1。我们称一个非负整数为odious,当且仅当该数的二进制形式的1出现的次数是奇数,否则称作evil。所以1,2,4,7是odious因为它们的二进制形式是1,10,100,111.而0,3,5,6是evil,因为它们的二进制形式是0,11,101,110。而上面那个表中,貌似sg值都是odious数。所以当2x为odious时,sg值是2x,当2x是evil时,sg值是2x+1.

这样怎么证明呢?我们会发现发现,

evil^evil=odious^odious=evil

evil^odious=odious^evil=odious

假设刚才的假说是成立的,我们想证明下一个sg值为下一个odious数。注意到我们总能够在第x位置翻转硬币到达sg为0的情况;通过翻转第x位置的硬币和两个其它硬币,我们可以移动到所有较小的evil数,因为每个非零的evil数都可以由两个odious数异或得到;但是我们不能移动到下一个odious数,因为任何两个odious数的异或都是evil数。

假设在一个Mock Turtles游戏中的首正硬币位置x1,x2,…,xn是个P局面,即sg[x1]^…^sg[xn]=0.那么无可置疑的是n必定是偶数,因为奇数个odious数的异或是odious数,不可能等于0。而由上面可知sg[x]是2x或者2x+1,sg[x]又是偶数个,那么x1^x2^…^xn=0。相反,如果x1^x2^…^xn=0且n是偶数,那么sg[x1]^…^sg[xn]=0。这个如果不太理解的话,我们可以先这么看下。2x在二进制当中相当于把x全部左移一位,然后补零,比如说2的二进制是10,那么4的二进制就是100。而2x+1在二进制当中相当于把x全部左移一位,然后补1,比如说2的二进制是10,5的二进制是101。现在看下sg[x1]^…^sg[xn]=0,因为sg[x]是2x或者2x+1,所以式子中的2x+1必须是偶数个(因为2x的最后一位都是0,2x+1的最后一位都是1,要最后异或为0,2x+1必须出现偶数次)。实际上的情况可能是这样的:

MT游戏当中的P局面是拥有偶数堆石子的Nim游戏的P局面。

这是翻硬币游戏里面种的一种,有了上面的理论之后这道题也就容易了!不过这道题要注意的地方就是去除重复位置!!

代码实现:


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

int n, a[105];

int main()
{
int flag, i, len, num, x;
while(scanf("%d",&n)!=EOF)
{
flag=0;
if(n==0)
{
printf("Yes\n");
continue;
}
for(i=0; i<n; i++)
scanf("%d",&a[i]);
sort(a,a+n);
len=0;
a[len++]=a[0];
for(i=1;i<n;i++)
if(a[i]!=a[len-1])
a[len++]=a[i];

for(i=0; i<len; i++)
{
num=0;
x=a[i]*2;
while(a[i])
{
if(a[i]&1)
num++;
a[i]=a[i]>>1;
}
if(num%2==0)
x++;
flag=flag^x;
}

if(flag)
printf("No\n");
else
printf("Yes\n");
}
return 0;
}

hdu 3537(博弈,翻硬币),布布扣,bubuko.com

时间: 2024-08-25 06:37:54

hdu 3537(博弈,翻硬币)的相关文章

博弈——翻硬币游戏

转自:http://blog.sina.com.cn/s/blog_8f06da99010125ol.html 翻硬币游戏 一般的翻硬币游戏的规则是这样的: N 枚硬币排成一排,有的正面朝上,有的反面朝上.我们从左开始对硬币按1 到N 编号. 第一,游戏者根据某些约束翻硬币,但他所翻动的硬币中,最右边那个硬币的必须是从正面翻到反面.例如,只能翻3个硬币的情况,那么第三个硬币必须是从正面翻到反面.如果局面是正正反,那就不能翻硬币了,因为第三个是反的. 第二,谁不能翻谁输. 有这样的结论:局面的SG

HDU 3537 Mock Turtles型翻硬币游戏

题目大意: 每次可以翻1个或者2个或者3个硬币,但要保证最右边的那个硬币是正面的,直到不能操作为输,这题目还有说因为主人公感情混乱可能描述不清会有重复的硬币说出,所以要去重 这是一个Mock Turtles型翻硬币游戏 下面是对这个类型游戏的讲解 约束条件6:每次可以翻动一个.二个或三个硬币.(Mock Turtles游戏) 初始编号从0开始. 当N==1时,硬币为:正,先手必胜,所以sg[0]=1. 当N==2时,硬币为:反正,先手必赢,先手操作后可能为:反反或正反,方案数为2,所以sg[1]

HDU 3537 Daizhenyang&#39;s Coin(博弈-sg)

Daizhenyang's Coin Problem Description We know that Daizhenyang is chasing a girlfriend. As we all know, whenever you chase a beautiful girl, there'll always be an opponent, or a rival. In order to take one step ahead in this chasing process, Daizhen

HDU 3537

翻硬币游戏,纯.. 注意要判重 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 using namespace std; 6 7 int a[105],n; 8 9 int sg(int x){ 10 int tmp=x,cnt=0; 11 while(x){ 12 if(x&1==1) cnt++; 13 x=(x>

【蓝桥杯】历届试题 翻硬币

  历届试题 翻硬币   时间限制:1.0s   内存限制:256.0MB 问题描述 小明正在玩一个“翻硬币”的游戏. 桌上放着排成一排的若干硬币.我们用 * 表示正面,用 o 表示反面(是小写字母,不是零). 比如,可能情形是:**oo***oooo 如果同时翻转左边的两个硬币,则变为:oooo***oooo 现在小明的问题是:如果已知了初始状态和要达到的目标状态,每次只能同时翻转相邻的两个硬币,那么对特定的局面,最少要翻动多少次呢? 我们约定:把翻动相邻的两个硬币叫做一步操作,那么要求: 输

蓝桥 PREV-34 历届试题 矩阵翻硬币

历届试题 矩阵翻硬币 时间限制:1.0s   内存限制:256.0MB 问题描述 小明先把硬币摆成了一个 n 行 m 列的矩阵. 随后,小明对每一个硬币分别进行一次 Q 操作. 对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转. 其中i和j为任意使操作可行的正整数,行号和列号都是从1开始. 当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹--所有硬币均为正面朝上. 小明想知道最开始有多少枚硬币是反面朝上的.于是,他向他的好朋友小M寻求帮助.

蓝桥杯 历届试题 PREV-34 矩阵翻硬币

历届试题 矩阵翻硬币 时间限制:1.0s   内存限制:256.0MB 问题描述 小明先把硬币摆成了一个 n 行 m 列的矩阵. 随后,小明对每一个硬币分别进行一次 Q 操作. 对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转. 其中i和j为任意使操作可行的正整数,行号和列号都是从1开始. 当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹--所有硬币均为正面朝上. 小明想知道最开始有多少枚硬币是反面朝上的.于是,他向他的好朋友小M寻求帮助.

HDU 1525 博弈

Euclid's Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 1880    Accepted Submission(s): 825 Problem Description Two players, Stan and Ollie, play, starting with two natural numbers. Stan,

HPU1288 矩阵翻硬币 【大数】

1288: 矩阵翻硬币 时间限制: 10 Sec  内存限制: 128 MB 提交: 1  解决: 1 [提交][状态][讨论版] [Edit] 题目描述 问题描述 小明先把硬币摆成了一个 n 行 m 列的矩阵. 随后,小明对每一个硬币分别进行一次 Q 操作. 对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转. 其中i和j为任意使操作可行的正整数,行号和列号都是从1开始. 当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹--所有硬币均为正面朝