【bzoj1042】[HAOI2008]硬币购物 背包dp+容斥原理

题目描述

硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。

输入

第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000

输出

每次的方法数

样例输入

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900

样例输出

4
27



题解

背包dp+容斥原理

考虑没有硬币个数限制,那么本题显然是完全背包问题。

加上限制以后,不能每次跑多重背包。

考虑容斥,满足条件的方案数=随意使用的方案数-某一种必须超限的方案数+某两种必须超限的方案数-某三种必须超限的方案数+全部超限的方案数。

第$i$种硬币超限的方案数为$f[s-c_i*(d_i+1)]$,多种同理。

dfs一遍即可。

#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
int c[4] , d[4];
ll f[100010] = {1};
ll dfs(int p , int s , int flag)
{
	if(p == 4) return s < 0 ? 0 : flag * f[s];
	return dfs(p + 1 , s , flag) + dfs(p + 1 , s - c[p] * (d[p] + 1) , -flag);
}
int main()
{
	int i , j , m , s;
	for(i = 0 ; i < 4 ; i ++ )
	{
		scanf("%d" , &c[i]);
		for(j = c[i] ; j <= 100000 ; j ++ ) f[j] += f[j - c[i]];
	}
	scanf("%d" , &m);
	while(m -- )
	{
		for(i = 0 ; i < 4 ; i ++ ) scanf("%d" , &d[i]);
		scanf("%d" , &s);
		printf("%lld\n" , dfs(0 , s , 1));
	}
	return 0;
}
时间: 2024-10-09 17:22:52

【bzoj1042】[HAOI2008]硬币购物 背包dp+容斥原理的相关文章

BZOJ-1042: [HAOI2008]硬币购物 (背包DP+容斥原理)

1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2888  Solved: 1777[Submit][Status][Discuss] Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,

[Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包的做法. 就是对于每一次询问,我们都做一次背包. 复杂度O(tot*s*log(di)) (使用二进制背包优化) 显然会T得起飞. 接下来,我们可以换一种角度来思考这个问题. 首先,我们可以假设没有每个物品的数量的限制,那么这样就会变成一个很简单的完全背包问题. 至于完全背包怎么写,我们在这里就不做

bzoj1042: [HAOI2008]硬币购物

好神的容斥原理 #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> #define rep(i,s,t) for(int i=s;i<=t;i++) #define dwn(i,s,t) for(int i=s;i>=t;i--) #define clr(x,c) memset(x,c,sizeof(x)) #define ll long long int

[bzoj1042][HAOI2008][硬币购物] (容斥原理+递推)

Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000 Output 每次的方法数 Sample Input 1 2 5 10 2 3 2 3 1 10 1000 2 2 2 900 Sample Output 4 27 So

[BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案. 为了避免重复的方案被转移,所以我们以硬币种类为第一层循环,这样阶段性的增加硬币. 一定要注意这个第一层循环要是硬币种类,并且初始 f[0] = 1. f[0] = 1; for (int i = 1; i <= 4; ++i) { for (int j = B[i]; j <= MaxS; +

bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][Status][Discuss] Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3

洛谷P1450 [HAOI2008]硬币购物 动态规划 + 容斥原理

洛谷P1450 [HAOI2008]硬币购物 动态规划 + 容斥原理 1.首先我们去掉限制 假设 能够取 无数次 也就是说一开始把他当做完全背包来考虑 离线DP 预处理 复杂度 4*v 用f[ i ] 表示 空间 为 i 的方案数 答案ans 其实就是所有方案 - 所有超过限制的方案 限制指的就是题目中限制 某个硬币有几枚 然后所有超过限制的方案用容斥来做 所有超过限制的方案 要减 == -1 超过限制的方案 - 2 超过限制的方案 - 3 超过限制的方案 - 4 超过限制的方案 + 1和2 超

【BZOJ1042】[HAOI2008]硬币购物 容斥

[BZOJ10492][HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000 Output 每次的方法数 Sample Input 1 2 5 10 2 3 2 3 1 10 1000 2 2 2

P1450 [HAOI2008]硬币购物(完全背包+容斥)

P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$东西的方案数 蓝后对每次询问价值$t$,减去不合法的方案 $c_1$超额方案$f[t-c_1*(d_1+1)]$,表示取了$d_1+1$个$c_1$,剩下随便取的方案数(这就是差分数组) 如法炮制,减去$c_2,c_3,c_4$的超额方案数 但是我们发现,我们多减了$(c_1,c_2),(c_1,c