几种流形学习算法-转载

标签:

知识/探索

流形

分类: technic
  • 局部线性嵌入(LLE)
  • 等距映射(Isomap)
  • 拉普拉斯特征映射(Laplacian Eigenmap)

局部线性嵌入(LLE)

前提假设:采样数据所在的低维流形在局部是线性的,即每个采样点可以用它的近邻点线性表示。

求解方法:特征值分解。
LLE算法:

  1. 计算每一个点Xi的近邻点,一般采用K近邻或者ξ领域。
  2. 计算权值Wij,使得把Xi用它的K个近邻点线性表示的误差最小,即通过最小化||Xi-WijXj||来求出Wij.
  3. 保持权值Wij不变,求Xi在低维空间的象Yi,使得低维重构误差最小。

多维尺度变换(MDS)

  • MDS是一种非监督的维数约简方法。
  • MDS的基本思想:约简后低维空间中任意两点间的距离应该与它们在原高维空间中的距离相同。
  • MDS的求解:通过适当定义准则函数来体现在低维空间中对高维距离的重建误差,对准则函数用梯度下降法求解,对于某些特殊的距离可以推导出解析法。

等距映射(Isomap)

基本思想:建立在多维尺度变换(MDS)的基础上,力求保持数据点的内在几何性质,即保持两点间的测地距离。

前提假设:

  • 高维数据所在的低维流形与欧氏空间的一个子集是整体等距的。
  • 与数据所在的流形等距的欧氏空间的子集是一个凸集。

核心:
估计两点间的测地距离:

  • 离得很近的点间的测地距离用欧氏距离代替。
  • 离得较远的点间的测地距离用最短路径来逼近。

拉普

时间: 2024-10-22 16:00:36

几种流形学习算法-转载的相关文章

6种负载均衡算法-转载

1.轮询法 将请求按顺序轮流地分配到后端服务器上,它均衡地对待后端的每一台服务器,而不关心服务器实际的连接数和当前的系统负载. 2.随机法 通过系统的随机算法,根据后端服务器的列表大小值来随机选取其中的一台服务器进行访问.由概率统计理论可以得知,随着客户端调用服务端的次数增多, 其实际效果越来越接近于平均分配调用量到后端的每一台服务器,也就是轮询的结果. 3.源地址哈希法 源地址哈希的思想是根据获取客户端的IP地址,通过哈希函数计算得到的一个数值,用该数值对服务器列表的大小进行取模运算,得到的结

浅谈流形学习(转)

http://blog.pluskid.org/?p=533 总觉得即使是“浅谈”两个字,还是让这个标题有些过大了,更何况我自己也才刚刚接触这么一个领域.不过懒得想其他标题了,想起来要扯一下这个话题,也是因为和朋友聊起我自己最近在做的方向.Manifold Learning 或者仅仅 Manifold 本身通常就听起来颇有些深奥的感觉,不过如果并不是想要进行严格的理论推导的话,也可以从许多直观的例子得到一些感性的认识,正好我也就借这个机会来简单地谈一下这个话题吧,或者说至少是我到目前为止对这它的

Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯

(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法. 而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一个大

机器学习-斯坦福:学习笔记5-生成学习算法

生成学习算法 本次课程大纲: 1. 生成学习算法 2. 高斯判别分析(GDA,Gaussian Discriminant Analysis) -          高斯分布(简要) -          对比生成学习算法&判别学习算法(简要) 3. 朴素贝叶斯 4. Laplace平滑 复习: 分类算法:给出一个训练集,若使用logistic回归算法,其工作方式是观察这组数据,尝试找到一条直线将图中不同的类分开,如下图. 之前讲的都是判别学习算法,本课介绍一种不同的算法:生成学习算法. 1. 生

流形学习-高维数据的降维与可视化

1.流形学习的概念 流形学习方法(Manifold Learning),简称流形学习,自2000年在著名的科学杂志<Science>被首次提出以来,已成为信息科学领域的研究热点.在理论和应用上,流形学习方法都具有重要的研究意义. 假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化.它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律. 以上选自百度百科 简单地理解

浅谈流形学习

转载自:http://blog.pluskid.org/?p=533 总觉得即使是“浅谈”两个字,还是让这个标题有些过大了,更何况我自己也才刚刚接触这么一个领域.不过懒得想其他标题了,想起来要扯一下这个话题,也是因为和朋友聊起我自己最近在做的方向.Manifold Learning 或者仅仅 Manifold 本身通常就听起来颇有些深奥的感觉,不过如果并不是想要进行严格的理论推导的话,也可以从许多直观的例子得到一些感性的认识,正好我也就借这个机会来简单地谈一下这个话题吧,或者说至少是我到目前为止

目前流行的几种排课算法的介绍

通用高校排课算法研究----2 .目前流行的几种排课算法的介绍 2   目前流行的几种排课算法的介绍 2.1. 自动排课算法 1 .问题的描述 我们讨论的自动排课问题的简化描述如下: 设要安排的课程为{ C1 , C2 , ., Cn} ,课程总数为n , 而各门课程每周安排次数(每次为连续的2 学时) 为{ N1 , N2 , ., Nn} ;每周教学日共5 天,即星期一- 星期五;每个教学日最多安排4次课程教学,即1 - 2 节.3 - 4 节.5 - 6 节和7 - 8 节(以下分别称第1

流形学习笔记

维数约简 特征选择,依据某一标准选择性质最突出的特征 特征抽取,经已有特征的某种变换获取约简特征 增加特征数: 可以增加信息量,进而提高准确度 增加训练分类器的难度,进而带来维数灾难. 解决办法: 选取尽可能多的.可能有用的特征,然后根据需要进行特征约简. 主成分分析(PCA) 目的: 寻找能够表示采样数据的最好投影子空间. 求解: 对样本的散布矩阵(scatter matrix)进行特征值分解,所求之空间为过样本均值,(何为过样本均值?) 以最大特征值所对应的特征向量为方向的之空间. 特点:

浅谈流形学习(Manifold Learning)

Machine Learning 虽然名字里带了 Learning 一个词,让人乍一看觉得和 Intelligence 相比不过是换了个说法而已,然而事实上这里的 Learning 的意义要朴素得多.我们来看一看 Machine Learning 的典型的流程就知道了,其实有时候觉得和应用数学或者更通俗的数学建模有些类似,通常我们会有需要分析或者处理的数据,根据一些经验和一些假设,我们可以构建一个模型,这个模型会有一些参数(即使是非参数化方法,也是可以类似地看待的),根据数据来求解模型参数的过程