python 给定n,返回n以内的斐波那契数列

方式一:函数

1 def fabs(n):
2     a, b = 0, 1
3     while b < n:
4         print(b, end=‘ ‘)
5         a, b = b, a+b
6
7 fabs(1000)

方式二:列表

1 result = [0, 1]
2
3 def fabs(n):
4     while n-result[-1] > result[-2]:
5         result.append(result[-2] + result[-1])
6
7 fabs(100)
8 print(result)

方式三:类

 1 class Fabs:
 2
 3     def __init__(self, max):
 4         self.max = max
 5         self.a, self.b = 0, 1
 6
 7     def __iter__(self):
 8         return self
 9
10     def next(self):
11         if self.b<self.max:
12             r = self.b
13             self.a, self.b = self.b, self.a+self.b
14             return r
15
16
17 f1 = Fabs(1000)
18 m = f1.next()
19 while m:
20     print(m, end=‘ ‘)
21     m = f1.next()

方式四:生成器

1 def fabs(n):
2     a, b = 0, 1
3     while b<n:
4         yield b
5         a, b = b, a+b
6
7 if __name__ == ‘__main__‘:
8     for i in fabs(1000):
9         print(i, end=‘ ‘)

时间: 2024-10-03 13:49:22

python 给定n,返回n以内的斐波那契数列的相关文章

python学习第四十四天斐波那契数列和yield关键词使用

斐波那契数列是数学中的常见的算法,第一个第二个不算,从第三个开始,每个数的都是前面两个数的和,使用yield关键词把生成的数列保存起来,调用的时候再调用,下面举例说明一下 def fab(max): n, a, b = 0, 0, 1 while n < max: yield b # print b a, b = b, a + b n = n + 1 调用方式 >>> for n in fab(5): ... print n ... 1 1 2 3 5 在这里yield起到关键的作

用递归方法计算斐波那契数列(Recursion Fibonacci Python)

先科普一下什么叫斐波那契数列,以下内容摘自百度百科: 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因意大利数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,指的是这样一个数列:1.1.2.3.5.8.13.21.34...这个数列从第3项开始,每一项都等于前两项之和. 根据以上定义,用python定义一个函数,用于计算斐波那契数列中第n项的数字是多少: def fib_recur(n): if n==0 or n==1 : r

如何使用Python输出一个[斐波那契数列]

如何使用Python输出一个[斐波那契数列]Fibonacci 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列". 例子:1.1.2.3.5.8.13.21.34.-- 解法1: 100以内的斐波那契数列 x=1 y=1 print(x,end=" ") print(y,end=" ") while(True)

Python递归及斐波那契数列

递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可以看出:fact(n) = n! = 1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理.于是,fact(n)用递归的方式写出来就是: def fact(

python实现斐波那契数列(Fibonacci sequence)

使用Python实现斐波那契数列(Fibonacci sequence) 斐波那契数列形如 1,1,2,3,5,8,13,等等.也就是说,下一个值是序列中前两个值之和.写一个函数,给定N,返回第N个斐波那契数字.例如,1返回1 6返回8 我选择了两种方法,一种是将list变成一个队列,另一个则是使用环形队列.不多说,直接上代码:后面我会对为什么这样实现做一个解释 第一个是使用队列的方式: 1 def fibonacciSeq(num): 2 fibonacciSeqList = [] 3 for

计算斐波那契数列的性能对比:Python,Java,Go

??本文采用递归办法来计算斐波那契数列中的第38项,用于对于三种计算机语言的计算性能,这三种语言为:Python,Java,Go. ??我们采用递归法来求解斐波那契数列的第n项f(n),其算法描述如下: function fib(n) if n = 0 return 0 if n = 1 return 1 return fib(n ? 1) + fib(n ? 2) 对于公平起见,我们利用三种程序计算f(38),运行100遍,得到平均耗时,作为性能对比. ??Python程序如下: # -*-

LeetCode | 面试题10- I. 斐波那契数列【剑指Offer】【Python】

LeetCode 面试题10- I. 斐波那契数列[剑指Offer][Easy][Python][动态规划] 问题 力扣 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项.斐波那契数列的定义如下: F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1. 斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出. 答案需要取模 1e9+7(1000000007),如计算初始结果为:10000000

vijos - P1543极值问题(斐波那契数列 + 公式推导 + python)

P1543极值问题 Accepted 标签:[显示标签] 背景 小铭的数学之旅2. 描述 已知m.n为整数,且满足下列两个条件: ① m.n∈1,2,-,K ② (n^ 2-mn-m^2)^2=1 编一程序,对给定K,求一组满足上述两个条件的m.n,并且使m^2+n^2的值最大.例如,若K=1995,则m=987,n=1597,则m.n满足条件,且可使m^2+n^2的值最大. 格式 输入格式 输入仅一行,K的值. 输出格式 输出仅一行,m^2+n^2的值. 样例1 样例输入1[复制] 1995

Python计算斐波那契数列

利用Python计算第一个达到一百万位数的斐波那契数列各位数之和 结果为4501552 以下是我用到的代码,不是中间需要一些人工操作来加快收敛性,有兴趣读者可以写代码加快收敛 首先执行这个,可以大致确定一百万个数所在斐波那契序列的位置 i=1 j=1 k=i+j count=3 while count<4850000: i=j j=k k=i+j count+=1 result=str(k) print('k长度') k_len=len(result) print(k_len) sum=0 fo