ZooKeeper之ZAB协议

ZooKeeper之ZAB协议

时间 2015-09-15 17:06:02  Solinx

原文  http://www.solinx.co/archives/435

主题 ZooKeeper

ZooKeeper为高可用的一致性协调框架,自然的ZooKeeper也有着一致性算法的实现,ZooKeeper使用的是ZAB协议作为数据一致性的算法, ZAB(ZooKeeper Atomic Broadcast ) 全称为:原子消息广播协议;ZAB可以说是在Paxos算法基础上进行了扩展改造而来的,ZAB协议设计了支持崩溃恢复,ZooKeeper使用单一主进程Leader用于处理客户端所有事务请求,采用ZAB协议将服务器数状态以事务形式广播到所有Follower上;由于事务间可能存在着依赖关系,ZAB协议保证Leader广播的变更序列被顺序的处理,:一个状态被处理那么它所依赖的状态也已经提前被处理;ZAB协议支持的崩溃恢复可以保证在Leader进程崩溃的时候可以重新选出Leader并且保证数据的完整性;

在ZooKeeper中所有的事务请求都由一个主服务器也就是Leader来处理,其他服务器为Follower,Leader将客户端的事务请求转换为事务Proposal,并且将Proposal分发给集群中其他所有的Follower,然后Leader等待Follwer反馈,当有 过半数(>=N/2+1) 的Follower反馈信息后,Leader将再次向集群内Follower广播Commit信息,Commit为将之前的Proposal提交;

协议状态

ZAB协议中存在着三种状态,每个节点都属于以下三种中的一种:

1. Looking :系统刚启动时或者Leader崩溃后正处于选举状态

2. Following :Follower节点所处的状态,Follower与Leader处于数据同步阶段;

3. Leading :Leader所处状态,当前集群中有一个Leader为主进程;

ZooKeeper启动时所有节点初始状态为Looking,这时集群会尝试选举出一个Leader节点,选举出的Leader节点切换为Leading状态;当节点发现集群中已经选举出Leader则该节点会切换到Following状态,然后和Leader节点保持同步;当Follower节点与Leader失去联系时Follower节点则会切换到Looking状态,开始新一轮选举;在ZooKeeper的整个生命周期中每个节点都会在Looking、Following、Leading状态间不断转换;

状态切换图

选举出Leader节点后ZAB进入原子广播阶段,这时Leader为和自己同步的每个节点Follower创建一个操作序列,一个时期一个Follower只能和一个Leader保持同步,Leader节点与Follower节点使用心跳检测来感知对方的存在;当Leader节点在超时时间内收到来自Follower的心跳检测那Follower节点会一直与该节点保持连接;若超时时间内Leader没有接收到来自过半Follower节点的心跳检测或TCP连接断开,那Leader会结束当前周期的领导,切换到Looking状态,所有Follower节点也会放弃该Leader节点切换到Looking状态,然后开始新一轮选举;

阶段

ZAB协议定义了 选举(election)、发现(discovery)、同步(sync)、广播(Broadcast) 四个阶段;ZAB选举(election)时当Follower存在ZXID(事务ID)时判断所有Follower节点的事务日志,只有lastZXID的节点才有资格成为Leader,这种情况下选举出来的Leader总有最新的事务日志,基于这个原因所以ZooKeeper实现的时候把 发现(discovery)与同步(sync)合并为恢复(recovery) 阶段;

1. Election :在Looking状态中选举出Leader节点,Leader的lastZXID总是最新的;

2. Discovery :Follower节点向准Leader推送FOllOWERINFO,该信息中包含了上一周期的epoch,接受准Leader的NEWLEADER指令,检查newEpoch有效性,准Leader要确保Follower的epoch与ZXID小于或等于自身的;

3. sync :将Follower与Leader的数据进行同步,由Leader发起同步指令,最总保持集群数据的一致性;

4. Broadcast :Leader广播Proposal与Commit,Follower接受Proposal与Commit;

5. Recovery :在Election阶段选举出Leader后本阶段主要工作就是进行数据的同步,使Leader具有highestZXID,集群保持数据的一致性;

选举(Election)

election阶段必须确保选出的Leader具有highestZXID,否则在Recovery阶段没法保证数据的一致性,Recovery阶段Leader要求Follower向自己同步数据没有Follower要求Leader保持数据同步,所有选举出来的Leader要具有最新的ZXID;

在选举的过程中会对每个Follower节点的ZXID进行对比只有highestZXID的Follower才可能当选Leader;

选举流程:

1. 每个Follower都向其他节点发送选自身为Leader的Vote投票请求,等待回复;

2. Follower接受到的Vote如果比自身的大(ZXID更新)时则投票,并更新自身的Vote,否则拒绝投票;

3. 每个Follower中维护着一个投票记录表,当某个节点收到过半的投票时,结束投票并把该Follower选为Leader,投票结束;

ZAB协议中使用ZXID作为事务编号,ZXID为64位数字,低32位为一个递增的计数器,每一个客户端的一个事务请求时Leader产生新的事务后该计数器都会加1,高32位为Leader周期epoch编号,当新选举出一个Leader节点时Leader会取出本地日志中最大事务Proposal的ZXID解析出对应的epoch把该值加1作为新的epoch,将低32位从0开始生成新的ZXID;ZAB使用epoch来区分不同的Leader周期;

恢复(Recovery)

在election阶段选举出来的Leader已经具有最新的ZXID,所有本阶段的主要工作是根据Leader的事务日志对Follower节点数据进行更新;

Leader:Leader生成新的ZXID与epoch,接收Follower发送过来的FOllOWERINFO(含有当前节点的LastZXID)然后往Follower发送NEWLEADER;Leader根据Follower发送过来的LastZXID根据数据更新策略向Follower发送更新指令;

同步策略:

1. SNAP :如果Follower数据太老,Leader将发送快照SNAP指令给Follower同步数据;

2. DIFF :Leader发送从Follolwer.lastZXID到Leader.lastZXID议案的DIFF指令给Follower同步数据;

3. TRUNC :当Follower.lastZXID比Leader.lastZXID大时,Leader发送从Leader.lastZXID到Follower.lastZXID的TRUNC指令让Follower丢弃该段数据;

Follower:往Leader发送FOLLOERINFO指令,Leader拒绝就转到Election阶段;接收Leader的NEWLEADER指令,如果该指令中epoch比当前Follower的epoch小那么Follower转到Election阶段;Follower还有主要工作是接收SNAP/DIFF/TRUNC指令同步数据与ZXID,同步成功后回复ACKNETLEADER,然后进入下一阶段;Follower将所有事务都同步完成后Leader会把该节点添加到可用Follower列表中;

SNAP与DIFF用于保证集群中Follower节点已经Committed的数据的一致性,TRUNC用于抛弃已经被处理但是没有Committed的数据;

广播(Broadcast)

客户端提交事务请求时Leader节点为每一个请求生成一个事务Proposal,将其发送给集群中所有的Follower节点,收到过半Follower的反馈后开始对事务进行提交,ZAB协议使用了原子广播协议;在ZAB协议中只需要得到过半的Follower节点反馈Ack就可以对事务进行提交,这也导致了Leader几点崩溃后可能会出现数据不一致的情况,ZAB使用了崩溃恢复来处理数字不一致问题;消息广播使用了TCP协议进行通讯所有保证了接受和发送事务的顺序性。广播消息时Leader节点为每个事务Proposal分配一个全局递增的ZXID(事务ID),每个事务Proposal都按照ZXID顺序来处理;

Leader节点为每一个Follower节点分配一个队列按事务ZXID顺序放入到队列中,且根据队列的规则FIFO来进行事务的发送。Follower节点收到事务Proposal后会将该事务以事务日志方式写入到本地磁盘中,成功后反馈Ack消息给Leader节点,Leader在接收到过半Follower节点的Ack反馈后就会进行事务的提交,以此同时向所有的Follower节点广播Commit消息,Follower节点收到Commit后开始对事务进行提交;

参考资料:

http://web.stanford.edu/class/cs347/reading/zab.pdf

http://www.tcs.hut.fi/Studies/T-79.5001/reports/2012-deSouzaMedeiros.pdf

时间: 2024-08-09 22:02:38

ZooKeeper之ZAB协议的相关文章

三:ZooKeeper的ZAB协议

一:ZAB协议概述--->ZooKeeper并没有完全采用Paxos算法,而是使用了一种称为ZooKeeper Atomic Broadcast(ZAB,zookeeper原子消息广播协议)的协议作为其数据一致性的核心算法.--->ZAB协议是为分布式协调服务ZooKeeper专门设计的一种支持漰溃恢复的原子广播协议.--->ZooKeeper实现了一种主备模式的系统架构来保持集群中各副本之间数据的一致性.具体,ZooKeeper使用一个单一的主进程来接收并处理客户端的所有事务请求,并采

Zookeeper的ZAB协议

一.ZAB协议(原子消息广播协议) ??ZAB(Zookeeper Atomic Broadcast)协议是Zookeeper用来保证其数据一致性的核心算法,是一种支持崩溃恢复的原子广播协议.基于此协议,Zookeeper实现了一种主备模式的系统架构来保持集群中各副本之间数据的一致性. 1.1.ZAB协议的作用 事务处理:ZAB协议要求Zookeeper中使用一个单一的主进程来接收并处理客户端的所有事务请求,并采用ZAB的原子广播协议,将服务器数据的状态变更以Proposal的形式广播到所有的副

<从PAXOS到ZOOKEEPER分布式一致性原理与实践>读书笔记-ZAB协议

本文属于分布式系统学习笔记系列,上一篇笔记整理了paxos算法,本文属于原书第四章,梳理zookeeper的目标特性及ZAB协议. 1.介绍zookeeper 1.1ZooKeeper保证一致性特性 ZooKeeper是一个典型的分布式数据一致性的解决方案,分布式程序可以基于它实现诸如数据发布/订阅.负载均衡.命名服务.分布式协调通知.集群管理.master选举.分布式锁.分布式队列等功能.ZooKeeper可以保证如下分布式一致性特性. 1.顺序一致性: 从同一个客户端发起的事务请求,最终将严

zookeeper 入门系列-理论基础 – zab 协议

上一章讨论了paxos算法,把paxos推到一个很高的位置.但是,paxos有没有什么问题呢?实际上,paxos还是有其自身的缺点的: 1. 活锁问题.在base-paxos算法中,不存在leader这样的角色,于是存在这样一种情况,即P1提交了一个proposal n1并且通过了prepare阶段:此时P2提交了一个proposal n2(n2>n1)并且也通过了prepare阶段:P1在commit时因为已经通过了n2而被拒绝:于是P1继续提交一个proposal n3并且通过prepare

Zookeeper——一致性协议:Zab协议

Reference: https://www.jianshu.com/p/2bceacd60b8a 什么是Zab协议 Zab 协议的作用 Zab 协议原理 Zab 协议核心 Zab 协议内容 原子广播 崩溃恢复 如何保证数据一致性 Zab 协议如何数据同步 如何处理需要丢弃的 Proposal Zab 协议实现原理 选主过程 什么是Zab协议? Zab协议 的全称是 Zookeeper Atomic Broadcast (Zookeeper原子广播). Zookeeper 是通过 Zab 协议来

搞懂分布式技术4:ZAB协议概述与选主流程详解

搞懂分布式技术4:ZAB协议概述与选主流程详解 ZAB协议 ZAB(Zookeeper Atomic Broadcast)协议是专门为zookeeper实现分布式协调功能而设计.zookeeper主要是根据ZAB协议是实现分布式系统数据一致性. zookeeper根据ZAB协议建立了主备模型完成zookeeper集群中数据的同步.这里所说的主备系统架构模型是指,在zookeeper集群中,只有一台leader负责处理外部客户端的事物请求(或写操作),然后leader服务器将客户端的写操作数据同步

Zookeeper的一致性协议:Zab(转)

Zookeeper使用了一种称为Zab(Zookeeper Atomic Broadcast)的协议作为其一致性复制的核心,据其作者说这是一种新发算法,其特点是充分考虑了Yahoo的具体情况:高吞吐量.低延迟.健壮.简单,但不过分要求其扩展性.下面将展示一些该协议的核心内容: 另,本文仅讨论Zookeeper使用的一致性协议而非讨论其源码实现 Zookeeper的实现是有Client.Server构成,Server端提供了一个一致性复制.存储服务,Client端会提供一些具体的语义,比如分布式锁

ZooKeeper(六)-- ZAB协议、分布式锁/master选举

一.CAP理论和BASE理论 1.CAP理论 CAP理论,指的是在一个分布式系统中,不可能同时满足Consistency(一致性). Availability(可用性).Partition tolerance(分区容错性)这三个基本需求,最多只能满足其中的两项. 对于分布式系统而言,分区容错性是一个最基本的要求,因为分布式系统中的组件必然需要部署到不通的节点,必然会出现子网络,在分布式系统中,网络问题是必定会出现的异常.因此分布式系统只能在C(一致性)和A(可用性)之间进行权衡.  (1)Con

Hadoop学习笔记(三)——zookeeper的一致性协议:ZAB

ZAB:ZooKeeper的Atomic Broadcast协议,能够保证发给各副本的消息顺序相同. Zookeeper使用了一种称为Zab(ZookeeperAtomic Broadcast)的协议作为其一致性复制的核心,其特点为高吞吐量.低延迟.健壮.简单,但不过分要求其扩展性. Zookeeper的实现是有Client.Server构成,Server端提供了一个一致性复制.存储服务,Client端会提供一些具体的语义,比如分布式锁.选举算法.分布式互斥等.从存储内容来说,Server端更多