约瑟夫环问题求解

问题描述:已知n个人,分别以编号1,2,3,...n表示,围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列,求最后一个出列人的编号。

一般性递归算法思考:n个人围成一圈,从k开始以m为步长报数,第(k+m)-1个人出列;于是转化为n-1个人围成一圈,从(k+m-1)+1开始以m为步长报数,第(k+m)+m-1个人出列;再转化为求n-2个人围成一圈,从(k+2m-1)+1开始以m为步长报数,第(k+2m)+m-1个人出列;依次类推,直至只剩1个人围成一圈,该人出列即为问题的解。另外,在经过多轮数数出列之后,起始报数人编号和出列人编号一直在递增,它们的取值最终都可能大于n;如果此过程不中断,必然出现同一个人多次出列的情况。

算法实现:Josephus(n, m, k)

/**
* 约瑟夫环胜利者求值,同时也打印出圈顺序至console以便于调试观察
*
* @para int n 总人数
* @para int m 数数步长
* @para int k 起始数数者
* @return int 最后胜利者
*/

function Josephus(n, m, k) {
    let list = ‘‘;

    if (n < 1) {
        return 0;
    } else if (n == 1) {
        list = ‘1‘;
        console.log(list);
        return 1;
    } else {
        return dequeue(n, m, k - 1);
    }

    function dequeue(n, m, out, i = n) { //n为总人数,m为数数步长,out为前一个出列者,i为迭代控制变量
        if (i < 1) {
            list = list.slice(0,-1);
            console.log(list);
            return out; //返回最后胜利者
        } else {
            out = (out + m - 1) % n + 1; //先减1后加1以避免(out + m) % n = 0,即当前出圈者为n时,模的取值却为0,而非n;同样又保证了当前out的取值始终落在[1, n]这个区间上,而如果令out = (out + m) % (n + 1),虽能保证当前out取值合法,却存在无效的情况,比如当(out + m) % (n + 1) = 0时,当前out取值1才是有效的
            list += out + ‘,‘;

            i = i - 1;
            return dequeue(n, m, out, i);
        }
    }
}
时间: 2024-11-15 05:34:14

约瑟夫环问题求解的相关文章

一个不简洁的约瑟夫环解法

约瑟夫环类似模型:已知有n个人,每次间隔k个人剔除一个,求最后一个剩余的. 此解法为变种,k最初为k-2,之后每次都加1. 例:n=5,k=3.从1开始,第一次间隔k-2=1,将3剔除,第二次间隔k-1=2,将1剔除.依此类推,直至剩余最后一个元素. 核心思路:将原列表复制多份横向展开,每次根据间隔获取被剔除的元素,同时将此元素存入一个剔除列表中.若被剔除元素不存在于剔除列表,则将其加入,若已存在,则顺势后移至从未加入剔除列表的元素,并将其加入.如此重复n-1次.面试遇到的题,当时只写了思路,没

ytu 1067: 顺序排号(约瑟夫环)

1067: 顺序排号Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 31  Solved: 16[Submit][Status][Web Board] Description 有n人围成一圈,顺序排号.从第1个人开始报数(从1到3报数),凡报到3的人退出圈子,问最后留下的是原来的第几号的那位. Input 初始人数n Output 最后一人的初始编号 Sample Input 3 Sample Output 2 HINT Source freepro

约瑟夫环 C语言 单循环链表

/*---------约瑟夫环---------*/ /*---------问题描述---------*/ /*编号为1,2,-,n的n个人围坐一圈,每人持一个密码(正整数). 一开始任选一个正整数作为报数上限值m, 从第一个人开始自1开始顺序报数,报到m时停止. 报m的人出列,将他的密码作为新的m值,从他的下一个人开始重新从1报数, 如此下去,直至所有人全部出列为止.试设计一个程序求出列顺序.*/ /*---------问题分析---------*/ /*n个人围坐一圈,且不断有人出列,即频繁

循环单向链表(约瑟夫环)

#include <stdio.h> #include <stdlib.h> typedef struct List { int data; struct List *next; }List; //创建循环单向链表n为长度 List *list_create(int n) { List *head, *p; int i; head = (List *)malloc(sizeof(List)); p = head; p->data = 1; //创建第一个结点 for (i =

约瑟夫环问题

(约瑟夫环问题)有n个人围成一圈,顺序排号.从第一个人开始报数(从1到3报数),凡报到3的人退出圈子,问最后留下的是原来第几号的那个人. package aiqiyi; import java.util.ArrayList; public class Main { public static int leftPerson(int n) { // 用list来保存n个人,序号为1~n ArrayList<Integer> list = new ArrayList<Integer>()

cdoj525-猴子选大王 (约瑟夫环)

http://acm.uestc.edu.cn/#/problem/show/525 猴子选大王 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit Status 有m个猴子围成一圈,按顺时针编号,分别为1到m.现打算从中选出一个大王.经过协商,决定选大王的规则如下:从第一个开始顺时针报数,报到n的猴子出圈,紧接着从下一个又从1顺时针循环报数,...,如此下去,最后剩

约瑟夫环——POJ3379

题目描述: 给出一个长度是n的字符串环,每次搁k个加入字符串中对应位置的字母序的下一个字母,执行m次,问最后一次插入的是什么字母. 大致思路: 正着想的话只能用模拟的方法解决,但是m有10^9这么大,而把问题倒过来想一下的话,那就变成了给出一个n+m的字符串每次搁k个字符删掉一个,最后剩下一个长度为n的字符串,问起始位置是什么字母.这样的话就变成了约瑟夫问题,约瑟夫环问题可以在不用考虑内容的情况下计算出最后剩下元素的位置.又因为字符串是一个环,所以可以假定开始的位置就是1,最后操作结束的位置就是

约瑟夫环问题--递推解法

利用数学推导,如果能得出一个通式,就可以利用递归.循环等手段解决.下面给出推导的过程: (1)第一个被删除的数为 (m - 1) % n. (2)假设第二轮的开始数字为k,那么这n - 1个数构成的约瑟夫环为k, k + 1, k + 2, k +3, .....,k - 3, k - 2.做一个简单的映射. k         ----->  0              k+1    ------> 1              k+2    ------> 2           

poj 2886 Who Gets the Most Candies?(线段树+约瑟夫环+反素数)

Who Gets the Most Candies? Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 9934   Accepted: 3050 Case Time Limit: 2000MS Description N children are sitting in a circle to play a game. The children are numbered from 1 to N in clockwise o