Python数据聚合和分组运算(1)-GroupBy Mechanics

前言

Python的pandas包提供的数据聚合与分组运算功能很强大,也很灵活。《Python for Data Analysis》这本书第9章详细的介绍了这方面的用法,但是有些细节不常用就容易忘记,遂打算把书中这部分内容总结在博客里,以便复习查看。根据书中的章节,这部分知识包括以下四部分:

1.GroupBy Mechanics(groupby技术)

2.Data Aggregation(数据聚合)

3.Group-wise Operation and Transformation(分组级运算和转换)

4.Pivot Tables and Cross-Tabulation(透视表和交叉表)

本文是第一部分,介绍groupby技术。

一、分组原理

核心:

1.不论分组键是数组、列表、字典、Series、函数,只要其与待分组变量的轴长度一致都可以传入groupby进行分组。

2.默认axis=0按行分组,可指定axis=1对列分组。

对数据进行分组操作的过程可以概括为:split-apply-combine三步:

1.按照键值(key)或者分组变量将数据分组。

2.对于每组应用我们的函数,这一步非常灵活,可以是python自带函数,可以是我们自己编写的函数。

3.将函数计算后的结果聚合。

图1:分组聚合原理(图片来自《Python for Data Analysis》page 252)

import pandas as pd
import numpy as np

df = pd.DataFrame({‘key1‘ : [‘a‘, ‘a‘, ‘b‘, ‘b‘, ‘a‘],
    ‘key2‘ : [‘one‘, ‘two‘, ‘one‘, ‘two‘, ‘one‘],
    ‘data1‘ : np.random.randn(5),
    ‘data2‘ : np.random.randn(5)})

我们将key1当做我们的分组键值,对data1进行分组,再求每组的均值:

grouped = df[‘data1‘].groupby(df[‘key1‘])

语法很简单,但是这里需要注意grouped的数据类型,它不在是一个数据框,而是一个GroupBy对象。

grouped

实际上,在这一步,我们并没有进行任何计算仅仅是创建用key1分组后创建了一个GroupBy对象,我们后面函数的任何操作都是基于这个对象的。

求均值:

grouped.mean()

刚刚我们只是用了key1进行了分组,我们也可以使用两个分组变量,并且通过unstack方法进行结果重塑:

means = df[‘data1‘].groupby([df[‘key1‘], df[‘key2‘]]).mean()
means

means.unstack

以上我们的分组变量都是df内部的Series,实际上只要是和key1等长的数组也可以:

states = np.array([‘Ohio‘, ‘California‘, ‘California‘, ‘Ohio‘, ‘Ohio‘])
years = np.array([2005, 2005, 2006, 2005, 2006])
df[‘data1‘].groupby([states, years]).mean()

二、对分组进行迭代

GroupBy对象支持迭代操作,会产生一个由分组变量名和数据块组成的二元元组:

for name, group in df.groupby(‘key1‘):
    print name
    print group

如果分组变量有两个:

for (k1,k2), group in df.groupby([‘key1‘,‘key2‘]):
    print k1,k2
    print group

我们可以将上面的结果转化为list或者dict,来看看结果是什么样的:

list(df.groupby([‘key1‘,‘key2‘]))

看不太清楚,我们来看看这个列表的第一个元素:

list(df.groupby([‘key1‘,‘key2‘]))[0]

同样,我们也可以将结果转化为dict(字典):

dict(list(df.groupby([‘key1‘,‘key2‘])))

dict(list(df.groupby([‘key1‘,‘key2‘])))[(‘a‘,‘one‘)]

以上都是基于行进行分组,因为默认情况下groupby是在axis=0方向(行方向)进行分组,我们可以指定axis=1方向(列方向)进行分组:

grouped=df.groupby(df.dtypes,axis=1)
list(grouped)[0]

dict(list(grouped))

注意,

‘‘‘下面两段语句功能一样‘‘‘
df.groupby(‘key1‘)[‘data1‘]
df.data1.groupby(df.key1)

三、通过字典进行分组

people = pd.DataFrame(np.random.randn(5, 5),
     columns=[‘a‘, ‘b‘, ‘c‘, ‘d‘, ‘e‘],
     index=[‘Joe‘, ‘Steve‘, ‘Wes‘, ‘Jim‘, ‘Travis‘])
people.ix[2:3, [‘b‘, ‘c‘]] = np.nan # 添加缺失值
people

假如,我们想按列进行聚合,该怎么操作呢?

我们根据实际情况,对列名建立字典,然后将此字典传入groupby,切记指定axis=1,因为我们是对列进行分组聚合:

mapping = {‘a‘: ‘red‘, ‘b‘: ‘red‘, ‘c‘: ‘blue‘,
     ‘d‘: ‘blue‘, ‘e‘: ‘red‘, ‘f‘ : ‘orange‘}
by_columns=people.groupby(mapping,axis=1)
by_columns.mean()

既然我们可以通过传入字典来对列进行分组,那么肯定也可以通过传入Series来对列进行分组了(Series中的index就相当字典中的key嘛):

map_series = pd.Series(mapping)
people.groupby(map_series,axis=1).count()

四、通过函数进行分组

刚刚我们分组时利用了dict和series建立映射,对于一些复杂的需求,我们可以直接对groupby函数传递函数名来进行分组,以刚才的people数据为例,如果我们想按行分组,分组的key是每个人名的字母长度,该怎么做呢?比较直接的想法是相对每个名字求长度,建立一个数组,然后将这个数组传入groupby,我们来试验一下:

l=[len(x) for x in people.index]
people.groupby(l).count()

方案可行,那么有没有更快捷更优美的方法呢?当然有啦,我们只需将len这个函数名传给groupby即可:

people.groupby(len).count()

除了传递函数,我们也可以将函数和dict,series,array一起使用,毕竟最后都会统统转化为数组:

key_list = [‘one‘, ‘one‘, ‘one‘, ‘two‘, ‘two‘]
people.groupby([len, key_list]).min()

五、根据索引级别分组

刚刚我们的数据索引只有一级,当数据有多级索引时,可以通过level指定我们想要分组的索引,注意要使用axis=1表示按列:

columns = pd.MultiIndex.from_arrays([[‘Asian‘, ‘Asian‘, ‘Asian‘, ‘America‘, ‘America‘],
    [‘China‘,‘Japan‘,‘Singapore‘,‘United States‘,‘Canada‘]], names=[‘continent‘, ‘country‘])
hier_df = pd.DataFrame(np.random.randn(4, 5), columns=columns)
hier_df

我们按洲进行分组求和:

时间: 2024-11-05 15:01:18

Python数据聚合和分组运算(1)-GroupBy Mechanics的相关文章

Python 数据分析(二 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识

Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4节 透视表和交叉表 第5节 时间序列 第6节 日期的规范.频率以及移动 第7节 时区处理 第8节 时期及算术运算 第9节 重采样及频率转换 第10节 时间序列绘图 groupby 技术 一.实验简介 Python 数据分析(二)需要同学们先行学完 Python 数据分析(一)的课程. 对数据集进行分

Python数据聚合和分组运算(2)-Data Aggregation

在上一篇博客里我们讲解了在python里运用pandas对数据进行分组,这篇博客将接着讲解对分组后的数据进行聚合. 1.python 中经过优化的groupy方法 先读入本文要使用的数据集tips.csv tips=pd.read_csv('tips.csv') tips.head()

Python 数据分析—第九章 数据聚合与分组运算

打算从后往前来做笔记 第九章 数据聚合与分组运算 分组 #生成数据,五行四列 df = pd.DataFrame({'key1':['a','a','b','b','a'], 'key2':['one','two','one','two','one'], 'data1':np.random.randn(5), 'data2':np.random.randn(5)}) df #可以按照key1分组计算data1的平均值 df.loc[:,'data1'].groupby(df.loc[:,'key

《利用python进行数据分析》读书笔记--第九章 数据聚合与分组运算

对数据进行分组并对各组应用一个函数,是数据分析的重要环节.数据准备好之后,通常的任务就是计算分组统计或生成透视表.groupby函数能高效处理数据,对数据进行切片.切块.摘要等操作.可以看出这跟SQL关系密切,但是可用的函数有很多.在本章中,可以学到: 根据一个或多个键(可以是函数.数组或DataFrame列名)拆分pandas对象 计算分组摘要统计,如计数.平均值.标准差.,或自定义函数 对DataFrame的列应用各种各样的函数 应用组内转换或其他运算,如规格化.线性回归.排名或选取子集等

利用Python进行数据分析-Pandas(第六部分-数据聚合与分组运算)

对数据集进行分组并对各组应用一个函数(无论是聚合还是转换),通常是数据分析工作中的重要环节.在将数据集加载.融合.准备好之后,通常是计算分组统计或生成透视表.pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片.切块.摘要等操作. 关系型数据库和SQL能够如此流行的原因之一就是能够方便地对数据进行连接.过滤.转换和聚合.但是,像SQL这样的查询语言所能执行的分组运算的种类很有限.在本部分你将会看到,由Python和pandas强大的表达能力,我们可以执行复

pandas聚合和分组运算之groupby

pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片.切块.摘要等操作.根据一个或多个键(可以是函数.数组或DataFrame列名)拆分pandas对象.计算分组摘要统计,如计数.平均值.标准差,或用户自定义函数.对DataFrame的列应用各种各样的函数.应用组内转换或其他运算,如规格化.线性回归.排名或选取子集等.计算透视表或交叉表.执行分位数分析以及其他分组分析. 1.首先来看看下面这个非常简单的表格型数据集(以DataFrame的形式): impo

数据聚合与分组运算

一.GroupBy技术 分组运算的过程可以由拆分-应用-合并描述. 利用df.groupby()进行分组操作 1.对分组进行迭代 GroupBy对象支持迭代,可以产生一组二元元组(由分组名(可能为组合)和数据块组成).对分出的数据片段可以做任何操作,例如将其做成一个字典.groupby默认是在axis=0上进行分组的,通过设置可以在任何其他轴上进行分组,例如还可以根据dtypes对列进行分组. 2.选取一个或一组列 对于由DataFrame产生的GroupBy对象,如果用一个或一组列名对其进行索

运维 2.0 时代:数据聚合和分组

运维 2.0 时代:数据聚合和分组 from http://www.cnblogs.com/oneapm/p/4962111.html 运维 2.0 是指,从技术运维升级为服务运维,向公司提供可依赖的专业服务.运维 2.0 强调服务交付能力,而不是技术能力,需求可依赖.懂业务.服务化的专业运维. 为了了解运维 2.0 时代的监控方式,我们不妨从以前的监控手段说起.首先来了解一下 Zabbix ,通过 Zabbix 能够监视各种网络参数,保证服务器系统的安全运营:并提供灵活的通知机制以让系统管理员

Python中的字典分组函数(groupby,itertools)

from operator import itemgetter # itemgetter用来去dict中的key,省去了使用lambda函数 from itertools import groupby # itertool d1={'name':'zhangsan','age':20,'country':'China'} d2={'name':'wangwu','age':19,'country':'USA'} d3={'name':'lisi','age':22,'country':'JP'}