Linux内存管理1

1.前言

关于内存管理的系列文章主要是对陈莉君老师所讲述的内存管理知识的整理。

本文将主要以X86架构来介绍Linux内存管理的相关知识。

2. 内存寻址

  • 内存寻址是操作系统设计的硬件基础之一

操作系统是横跨软件和硬件的桥梁

操作系统设计者必须在硬件相关代码和硬件无关代码之间划分清晰的界限,以便操作系统很容易的移植到不同的平台

  •  内存寻址的不同时期

(1)石器时代---8位寻址:4004是4位寻址,8080是8位寻址,由一个主累加器(寄存器A)和6个次累加器(寄存器B,C,D,E,H和L),没有段的概念,访问内存需要通过绝对地址,程序中地址必须通过硬编码,难以重定位????

//TODO

时间: 2024-08-18 00:47:32

Linux内存管理1的相关文章

linux内存管理

一.Linux 进程在内存中的数据结构 一个可执行程序在存储(没有调入内存)时分为代码段,数据段,未初始化数据段三部分:    1) 代码段:存放CPU执行的机器指令.通常代码区是共享的,即其它执行程序可调用它.假如机器中有数个进程运行相同的一个程序,那么它们就可以使用同一个代码段.     2) 数据段:存放已初始化的全局变量.静态变量(包括全局和局部的).常量.static全局变量和static函数只能在当前文件中被调用.     3) 未初始化数据区(uninitializeddata s

Linux内存管理机制

一.首先大概了解一下计算机CPU.Cache.内存.硬盘之间的关系及区别. 1.  CPU也称为中央处理器(CPU,Central Processing Unit)是一块超大规模的集成电路, 是一台计算机的运算核心(Core)和控制核心( Control Unit).它的功能主要是解释计算机指令以及处理计算机软件中的数据.中央处理器主要由三核心部件组成,运算器.控制器和总线(BUS),运算器又主要由算术逻辑单元(ALU)和寄存器(RS)组成. 2.Cache即高速缓冲存储器,是位于CPU与主内存

Linux内存管理 【转】

转自:http://blog.chinaunix.net/uid-25909619-id-4491368.html Linux内存管理 摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理,在此基础上逐步深入到内核中讨论系统物理内存管理和内核内存的使用方法.力求从外到内.水到渠成地引导网友分析Linux的内存管理与使用.在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理之间的关系,希望大家最终能驾驭Linux内存管理. 前言 内存管理一向是所有操作系统书

linux内存管理浅析

[地址映射](图:左中)linux内核使用页式内存管理,应用程序给出的内存地址是虚拟地址,它需要经过若干级页表一级一级的变换,才变成真正的物理地址.想一下,地址映射还是一件很恐怖的事情.当访问一个由虚拟地址表示的内存空间时,需要先经过若干次的内存访问,得到每一级页表中用于转换的页表项(页表是存放在内存里面的),才能完成映射.也就是说,要实现一次内存访问,实际上内存被访问了N+1次(N=页表级数),并且还需要做N次加法运算.所以,地址映射必须要有硬件支持,mmu(内存管理单元)就是这个硬件.并且需

启动期间的内存管理之初始化过程概述----Linux内存管理(九)

日期 内核版本 架构 作者 GitHub CSDN 2016-06-14 Linux-4.7 X86 & arm gatieme LinuxDeviceDrivers Linux内存管理 在内存管理的上下文中, 初始化(initialization)可以有多种含义. 在许多CPU上, 必须显式设置适用于Linux内核的内存模型. 例如在x86_32上需要切换到保护模式, 然后内核才能检测到可用内存和寄存器. 而我们今天要讲的boot阶段就是系统初始化阶段使用的内存分配器. 1 前景回顾 1.1

linux内存管理---物理地址、线性地址、虚拟地址、逻辑地址之间的转换

linux内存管理---虚拟地址.逻辑地址.线性地址.物理地址的区别(一) 这篇文章中介绍了四个名词的概念,下面针对四个地址的转换进行分析 CPU将一个虚拟内存空间中的地址转换为物理地址,需要进行两步(如下图): 首先,将给定一个逻辑地址(其实是段内偏移量,这个一定要理解!!!),CPU要利用其段式内存管理单元,先将为个逻辑地址转换成一个线程地址, 其次,再利用其页式内存管理单元,转换为最终物理地址. 这样做两次转换,的确是非常麻烦而且没有必要的,因为直接可以把线性地址抽像给进程.之所以这样冗余

Linux内存管理 (一) 内存组织

内存管理是内核最复杂同时也是最重要的一部.其特点在于非常需要处理器和内核之间的协作. 首先内存划分为结点,在内核中表示为pg_data_t,每个结点划分为内存域. 以下的所有数据结构或代码都做了不同程度的精减,一方面是为了保留相关代码,除去细枝末叶,另一方面是为了美观. 结点的数据结构为 <mmzone.h>typedef struct pglist_data { struct zone node_zones[MAX_NR_ZONES]; /*内存结点所包含的内存域数组*/ struct zo

Python学习第六天----Linux内存管理、进程管理、RPM包安装管理及源码安装软件

Linux内存管理.进程管理.RPM包安装管理及源码安装软件 一.交换分区     交换分区其实就相当于Windows系统下的虚拟内存的概念,当物理内存不够用的时候,由操作系统将硬盘的一块区域划分出来作为内存使用.具体使用方法如下:      [[email protected] ~]# fdisk -l 磁盘 /dev/sdb:16.1 GB, 16106127360 字节,31457280 个扇区 Units = 扇区 of 1 * 512 = 512 bytes 扇区大小(逻辑/物理):5

linux内存管理---虚拟地址、逻辑地址、线性地址、物理地址的区别(一)

分析linux内存管理机制,离不了上述几个概念,在介绍上述几个概念之前,先从<深入理解linux内核>这本书中摘抄几段关于上述名词的解释: 一.<深入理解linux内核>的解释 逻辑地址(Logical Address) 包含在机器语言指令中用来指定一个操作数或一条指令的地址(有点深奥).这种寻址方式在80x86著名的分段结构中表现得尤为具体,它促使windows程序员把程序分成若干段.每个逻辑地址都由一个段和偏移量组成,偏移量指明了从段开始的地方到实际地址之间的距离. 线性地址(