1. 便捷数据获取
1.2 网络数据获取:
1.2.1 urllib, urllib2, httplib, httplib2和正则表达式(python3中为urllib.request, http.client)
获取AXP近一年的股票数据
2. 数据准备和整理
3. 数据显示
4. 数据选择
4.1 选择行
4.1.1 索引
obj.ix[val
4.1.2 切片
obj[‘xx‘:‘xxx‘]
4.2 选择列
obj[‘xx‘]
obj.xx
4.3 行、列 - 标签label ( loc )
In [64]: djidf.loc[1:5,] Out[64]: code name lasttrade 1 AXP American Express Company 76.200 2 BA The Boeing Company 159.530 3 CAT Caterpillar Inc. 94.580 4 CSCO 思科系?公司 30.100 5 CVX Chevron Corporation 115.600 In [65]: djidf.loc[:,[‘code‘,‘lasttrade‘]] Out[65]: code lasttrade 0 AAPL 120.000 1 AXP 76.200 2 BA 159.530 3 CAT 94.580 ... 29 XOM 85.890
obj.loc[x : xx, [‘y‘,‘yy‘] ]
4.4 行和列的区域 - 标签label ( loc 和 at )
In [66]: djidf.loc[1:5,[‘code‘,‘lasttrade‘]] Out[66]: code lasttrade 1 AXP 76.200 2 BA 159.530 3 CAT 94.580 4 CSCO 30.100 5 CVX 115.600 In [67]: djidf.loc[1,‘lasttrade‘] Out[67]: ‘76.200‘ In [68]: djidf.at[1,‘lasttrade‘] Out[68]: ‘76.200‘
obj.loc[x, ‘y‘]
4.5 行、列和区域 ( iloc 和 iat )
In [69]: djidf.loc[1:5,[‘code‘,‘lasttrade‘]] Out[69]: code lasttrade 1 AXP 76.200 2 BA 159.530 3 CAT 94.580 4 CSCO 30.100 5 CVX 115.600 In [70]: djidf.iloc[1:6,[0,2]] Out[70]: code lasttrade 1 AXP 76.200 2 BA 159.530 3 CAT 94.580 4 CSCO 30.100 5 CVX 115.600 In [71]: djidf.loc[1,‘lasttrade‘] Out[71]: ‘76.200‘ In [72]: djidf.at[1,‘lasttrade‘] Out[72]: ‘76.200‘ In [73]: djidf.iloc[1,2] Out[73]: ‘76.200‘ In [74]: djidf.iat[1,2] Out[74]: ‘76.200‘
obj.iloc[ a:b, [c,d] ]
4.5 条件筛选
In [77]: quotesdf[quotesdf.index >= ‘2016-12-20‘] Out[77]: open close high low volume 2016-12-20 74.681487 74.741230 75.179363 74.213482 3244900.0 ... 2017-01-20 75.989998 76.199997 76.910004 75.389999 8382000.0 In [78]: quotesdf[(quotesdf.index >= ‘2016-12-20‘) & (quotesdf.close >=76)] Out[78]: open close high low volume 2017-01-04 75.260002 76.260002 76.550003 75.059998 4635800.0 ... 2017-01-20 75.989998 76.199997 76.910004 75.389999 8382000.0
quotesdf[(quotesdf.index >= ‘2016-12-20‘) & (quotesdf.close >=76)]
5. 简单统计与处理
6. Grouping
7. Merge
时间: 2024-10-16 00:35:55