hdu--1258--Sum It Up(Map水过)

Sum It Up

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6581    Accepted Submission(s): 3451

Problem Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x1,...,xn. If n=0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12(inclusive), and x1,...,xn will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing ‘Sums of‘, the total, and a colon. Then output each sum, one per line; if there are no sums, output the line ‘NONE‘. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distince; the same sum connot appear twice.

Sample Input

4 6 4 3 2 2 1 1

5 3 2 1 1

400 12 50 50 50 50 50 50 25 25 25 25 25 25

0 0

Sample Output

Sums of 4:

4

3+1

2+2

2+1+1

Sums of 5:

NONE

Sums of 400:

50+50+50+50+50+50+25+25+25+25

50+50+50+50+50+25+25+25+25+25+25

 1 /*
 2     Name: hdu--1258--Sum It Up
 3     Copyright: ?2017 日天大帝
 4     Author: 日天大帝
 5     Date: 29/04/17 18:48
 6     Description: dfs,C++map水过
 7 */
 8 #include<iostream>
 9 #include<cstring>
10 #include<map>
11 using namespace std;
12 void dfs(int,int,map<int,int,greater<int>>::iterator it);
13 const int MAX = 1005;
14 int res[MAX];
15 int n,t,flag;
16 map<int,int,greater<int>> mymap;
17 int main(){
18     ios::sync_with_stdio(false);
19
20     while(cin>>n>>t,n||t){
21         mymap.clear();
22         flag = 0;
23         memset(res,0,sizeof(res));
24         for(int i=0; i<t; ++i){
25             int a;cin>>a;
26             mymap[a]++;
27         }
28         cout<<"Sums of "<<n<<":"<<endl;
29         dfs(0,0,mymap.begin());
30         if(flag == 0)cout<<"NONE"<<endl;
31     }
32     return 0;
33 }
34 void dfs(int sum,int ct,map<int,int,greater<int>>::iterator iter){
35     if(sum == n){
36         flag = 1;
37         cout<<res[0];
38         for(int i=1; i<ct; ++i){
39             cout<<"+"<<res[i];
40         }
41         cout<<endl;
42     }
43     for(auto it=iter; it!=mymap.end(); ++it){
44         if(it->second == 0)continue;
45         for(int i=it->second; i>0; i--){
46             if(sum+(i*it->first) > n)continue;
47             for(int k=0; k<i; ++k){
48                 res[ct + k] = it->first;
49             }
50             auto ipoint = it;
51             dfs(sum+(i*it->first),ct+i,++ipoint);
52         }
53     }
54 }
时间: 2024-10-23 08:19:52

hdu--1258--Sum It Up(Map水过)的相关文章

hdu 1258 Sum It Up (dfs+路径记录)

Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3953    Accepted Submission(s): 2032 Problem Description Given a specified total t and a list of n integers, find all distinct sums usi

HDU 1258 Sum It Up(dfs 巧妙去重)

传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1258 Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 7758    Accepted Submission(s): 4067 Problem Description Given a specified total t a

HDU 1258 Sum It Up 深搜

 Crawling in process... Crawling failed   Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 1258 Description Given a specified total t and a list of n integers, find all distinct sums using numb

hdu 1258 Sum It Up(dfs+去重)

题目大意: 给你一个总和(total)和一列(list)整数,共n个整数,要求用这些整数相加,使相加的结果等于total,找出所有不相同的拼凑方法. 例如,total = 4,n = 6,list = [4,3,2,2,1,1]. 有四种不同的方法使得它们相加的结果等于total(即等于4),分别为:4,3+1,2+2, 2+1+1. 在同一种拼凑方式中,每个数字不能被重复使用,但是在list中可能存在许多相等的数字. 输入: 输入包含许多测试用例,每个用例仅占一行.每个用例包含t(total)

HDU 1258 Sum It Up (POJ 1564)

以前做过,碰巧看到了.我去复制了一下.很奇怪--交POJ的程序交HDU 就WA. 然后重写,交HDU的程序AC后再去交 POJ 居然TLE.简直-- 简单DFS,判重就好了. HDU : #include<cstdio> #include<cstring> #include<string> #include<queue> #include<algorithm> #include<map> #include<stack> #

HDU 1258 Sum It Up(DFS)

题目链接 Problem Description Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4

HDU 1258 Sum It Up (dfs)

#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int a[20]; int ans[20]; int num[200]; struct Mark { int shu,rt; }; Mark mark[20]; int ok; int n,t; int cnt; int cmp(int x,int y) { retur

HDU 1258:Sum It Up

Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3695    Accepted Submission(s): 1873 Problem Description Given a specified total t and a list of n integers, find all distinct sums usi

HDU 2352 Verdis Quo (map 水)

#include<stdio.h> #include<string.h> #include<math.h> #include<iostream> #include<algorithm> #include<map> using namespace std; map <char,int> a; int main() { a['I']=1; a['V']=5; a['X']=10; a['L']=50; a['C']=100;

HDU 1258 Sum It Up DFS 简单题 好题

给出一个数t,n,然后后面有n个数. 问:从这n个数里面能不能挑出一些数,使得和为t,注意输出顺序. Sample Input 4 6 4 3 2 2 1 1 5 3 2 1 1 400 12 50 50 50 50 50 50 25 25 25 25 25 25 0 0 Sample Output Sums of 4: 4 3+1 2+2 2+1+1 Sums of 5: NONE Sums of 400: 50+50+50+50+50+50+25+25+25+25 50+50+50+50+5