这个题网上很多人都说用状态压缩dp来做,我就是觉得状态压缩dp有点那么理解不上啊,不过如果这个题吧相邻的两个格子连起来,那不就是求最大权独立点集吗?奋战了三天,我的第一道最大流题目终于写出来了,高兴啊!
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define inf 0x0f0f0f0fusing namespace std;
const double pi=acos(-1.0);
const double eps=1e-8;
typedef pair<int,int>pii;const int maxn=2500+10;
struct Edge
{
int from,to,cap,flow;
};int n,m,s,t;
vector<Edge>edges;
vector<int>G[maxn];
int d[maxn],cur[maxn];
bool vis[maxn];void AddEdge(int from,int to,int cap)
{
Edge temp;
temp.cap=cap; temp.flow=0; temp.from=from; temp.to=to;
edges.push_back(temp);
temp.cap=0; temp.flow=0; temp.from=to; temp.to=from;
edges.push_back(temp);
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}bool BFS()
{
memset(vis,0,sizeof(vis));
queue<int>Q;
Q.push(s);
d[s]=0;
vis[s]=1;
while(!Q.empty())
{
int x=Q.front();Q.pop();
for (int i=0;i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if (!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=1;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
}int DFS(int x,int a)
{
if (x==t || a==0) return a;
int flow=0,f;
for (int i=cur[x];i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if (d[x]+1==d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0)
{
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if (a==0) break;
}
}
return flow;
}int Dinic()
{
int flow=0;
while (BFS())
{
memset(cur,0,sizeof(cur));
flow+=DFS(s,inf);
}
return flow;
}void init()
{
for (int i=0;i<=maxn;i++) G[i].clear();
edges.clear();
}int main()
{
//freopen("in.txt","r",stdin);int N,M,a,sum;
int dx[4]={-1,1,0,0};
int dy[4]={0,0,-1,1};
while (scanf("%d",&N)!=EOF)
{
init();
s=0;t=N*N+1;
sum=0;
for (int i=1;i<=N;i++)
for (int j=1;j<=N;j++)
{
scanf("%d",&a);
sum+=a;
int x=(i-1)*N+j;
if ((i+j)%2==0)
{
AddEdge(s,x,a);
for (int k=0;k<4;k++)
{
int xx=i+dx[k];
int yy=j+dy[k];
if (xx>=1 && xx<=N && yy>=1 && yy<=N)
{
int y=(xx-1)*N+yy;
AddEdge(x,y,inf);
}
}
}
else
{
AddEdge(x,t,a);
for (int k=0;k<4;k++)
{
int xx=i+dx[k];
int yy=j+dy[k];
if (xx>=1 && xx<=N && yy>=1 && yy<=N)
{
int y=(xx-1)*N+yy;
AddEdge(y,x,inf);
}
}
}
}
printf("%d\n",sum-Dinic());
}
//fclose(stdin);
return 0;
}
hdu 1565 方格取数(1),布布扣,bubuko.com