阶乘中0的个数

任何一个数分解质因数后,表达为2的x1次方   *     3的x2次方   *    5 的x3次方  等等

0的来源于2*5,x1》x2 ,所以阶乘中0的个数为5的个数,下面就很简单了。

http://acm.nyist.net/JudgeOnline/problem.php?pid=84

import java.util.Scanner;

public class Main {

public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner scn=new Scanner(System.in);
int len=scn.nextInt();
while(len-->0)
{

System.out.println(fun1(scn.nextInt()));

}

}

private static int fun1(int next) {
// TODO Auto-generated method stub
int count=0;
int n=next;
while(n!=0)
{
count+=(n/5);
n=n/5;
}

return count;

}
}

阶乘中0的个数,布布扣,bubuko.com

时间: 2024-10-16 08:25:44

阶乘中0的个数的相关文章

正数阶乘结尾0的个数

题目:对任意输入的正整数N,编写C程序求N!的尾部连续0的个数,并指出计算复杂度.如:18!=6402373705728000,尾部连续0的个数是3. (不用考虑数值超出计算机整数界限的问题). 刚看到这道题,脑子中一闪而过的肯定是最原始的方法,但是仔细看看题目,不考虑超出计算机整数边界的问题.显然如果数据过大,求阶乘本身就是个复杂的计算,然后再找结果尾数为0的个数. 1.这个问题当然有简便的方法,我们这样思考,结尾0的个数,就是乘积是10的倍数,因子中有多少个10 就有多少个零,10再次分解就

阶乘末尾0的个数(证明)

先给出算法: 给定n,求n的阶乘末尾0的个数. int res = 0; while (n > 0) { res += n / 5; n /= 5; } 因为: 比方说求15的阶乘,也就是求 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10 × 11 × 12 × 13 × 14 × 15 的末尾0的个数.现在我们把这15个数分解出来含有5的因子 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 2   × 11 × 12 × 13 × 14 ×

N的阶乘末尾0的个数和其二进制表示中最后位1的位置

问题一解法: 我们知道求N的阶乘结果末尾0的个数也就是说我们在从1做到N的乘法的时候里面产生了多少个10, 我们可以这样分解,也就是将从0到N的数分解成因式,再将这些因式相乘,那么里面有多少个10呢? 其实我们只要算里面有多少个5就可以了? 因为在这些分解后的因子中,能产生10的可只有5和2相乘了,由于2的个数是大于5的个数的,因此 我们只要算5的个数就可以了.那么这个题目就是算这些从1到N的数字分解成因子后,这些因子里面 5的个数. Python代码 def factorialnumberof

nyoj 56 阶乘中素数的个数

给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数随后的s行, 每行有两个整数n,m. 假设m=5,n=26;26!中5的个数为多少呢?只有5的倍数中含有5 1. 5 10 15 20 25 共5个(26/5) 2.这个时候,我们认为有些数中有多个5,比如25,将上述数全部除以5, 1 2 3 4 5  存在一个5(5/5) 所以共6个. 简单来说就是 sum=0

LightOj 1138 - Trailing Zeroes (III) 阶乘末尾0的个数 &amp; 二分

题目链接:http://lightoj.com/volume_showproblem.php?problem=1138 题意:给你一个数n,然后找个一个最小的数x,使得x!的末尾有n个0:如果没有输出impossible 可以用二分求结果,重点是求一个数的阶乘中末尾含有0的个数,一定和因子5和2的个数有关,因子为2的明显比5多,所以我们只需要求一个数的阶乘的因子中一共有多少个5即可; LL Find(LL x) { LL ans = 0; while(x) { ans += x/5; x /=

求一个数阶乘末尾0的个数

#include<iostream> using namespace std; //给定一个整数N,那么N的阶乘末尾有几个0?N=10,N!=3628800,末尾有2个0 //1.如果我们从"哪些数相乘能得到 10"这个角度来考虑,问题就变得简单了. //首先考虑,如果 N!= K×10M,且 K 不能被 10 整除,那么 N!末尾有 M 个 0.再考虑 //对 N!进行质因数分解,N!=(2x)×(3y)×(5z)-,由于 10 = 2×5,所以 M 只跟 X 和 Z /

Java 计算N阶乘末尾0的个数-LeetCode 172 Factorial Trailing Zeroes

题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 分析 Note中提示让用对数的时间复杂度求解,那么如果粗暴的算出N的阶乘然后看末尾0的个数是不可能的. 所以仔细分析,N! = 1 * 2 * 3 * ... * N 而末尾0的个数只与这些乘数中5和2的个数有关,因为每出现一对5和2就会产生

算法题:求二进制位中0的个数

#include <iostream> using namespace std; //古有求二进制数中1的个数,今有求二进制中0的个数. int Grial(int x) { int count = 0; while (x + 1) { count++; x |= (x + 1); } return count; } int main() { cout << Grial(1) << endl; return 0; } //为了方便验证,我把求二进制数中1的个数也写下来.

阶乘末尾0的个数问题

问题:给定一个整数N,那么N的阶乘N!末尾有多少个0? 比如:N=10,N!=3628800,N!的末尾有2个0,写出算法. 回答: int countZero(int N) {    int ans = 0;    int maxInt = 1000000000;//10^9    int  tmpn = N;    while(tmpn){        maxInt /= 10;        tmpn /= 10;    }    int lastBit = 1; //保存上一个阶乘 的