【网络流】最大流最简单的Ford-Fulkerson算法

Ford-Fulkerson算法是一个非常好理解的算法。大概是这样子的:

①不断从起点开始dfs 找一个通向终点的路。如果一条都找不到了,那么当前的值就是最大流

②如果还存在着通向终点的路,那么加上它的最短的一截,然后做出图的残余图。继续。

下面是基于邻接矩阵的Ford-Fulkerson最大流算法。简单易懂,老少皆宜。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
int map[300][300];
int used[300];
int n,m;
const int INF = 1000000000;
int dfs(int s,int t,int f)
{
    if(s == t) return f;
    for(int i = 1 ; i <= n ; i ++) {
        if(map[s][i] > 0 && !used[i]) {
            used[i] = true;
            int d = dfs(i,t,min(f,map[s][i]));
            if(d > 0) {
                map[s][i] -= d;
                map[i][s] += d;
                return d;
            }
        }
    }
}
int maxflow(int s,int t)
{
    int flow = 0;
    while(true) {
        memset(used,0,sizeof(used));
        int f = dfs(s,t,INF);//不断找从s到t的增广路
        if(f == 0) return flow;//找不到了就回去
        flow += f;//找到一个流量f的路
    }
}
int main()
{
    while(scanf("%d%d",&m,&n) != EOF) {
        memset(map,0,sizeof(map));
        for(int i = 0 ; i < m ; i ++) {
            int from,to,cap;
            scanf("%d%d%d",&from,&to,&cap);
            map[from][to] += cap;
        }
        cout << maxflow(1,n) << endl;
    }
    return 0;
}
时间: 2024-11-10 07:13:20

【网络流】最大流最简单的Ford-Fulkerson算法的相关文章

POJ 3281 Dining (网络流最大流 拆点建图 Edmonds-Karp算法)

Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10159   Accepted: 4676 Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others. Farmer John has cooked fabulo

ACM/ICPC 之 网络流入门-Ford Fulkerson(POJ1149)

按顾客访问猪圈的顺序依次构图(顾客为结点),汇点->第一个顾客->第二个顾客->...->汇点 //第一道网络流 //Ford-Fulkerson //Time:47Ms Memory:276K #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #include<queue> using namespace std; #def

数据结构之网络流入门(Network Flow)简单小节

网络流的相关定义: 源点:有n个点,有m条有向边,有一个点很特殊,只出不进,叫做源点. 汇点:另一个点也很特殊,只进不出,叫做汇点. 容量和流量:每条有向边上有两个量,容量和流量,从i到j的容量通常用c[i,j]表示,流量则通常是f[i,j]. 通常可以把这些边想象成道路,流量就是这条道路的车流量,容量就是道路可承受的最大的车流量.很显然的,流量<=容量.而对于每个不是源点和汇点的点来说,可以类比的想象成没有存储功能的货物的中转站,所有“进入”他们的流量和等于所有从他本身“出去”的流量. 最大流

POJ训练计划3422_Kaka&#39;s Matrix Travels(网络流/费用流)

解题报告 题目传送门 题意: 从n×n的矩阵的左上角走到右下角,每次只能向右和向下走,走到一个格子上加上格子的数,可以走k次.问最大的和是多少. 思路: 建图:每个格子掰成两个点,分别叫"出点","入点", 入点到出点间连一个容量1,费用为格子数的边,以及一个容量∞,费用0的边. 同时,一个格子的"出点"向它右.下的格子的"入点"连边,容量∞,费用0. 源点向(0,0)的入点连一个容量K的边,(N-1,N-1)的出点向汇点连一

POJ训练计划2516_Minimum Cost(网络流/费用流)

解题报告 题意: 有n个商店,m个提供商,k种商品</span> n*k的矩阵,表示每个商店需要每个商品的数目: m*k矩阵,表示每个提供商拥有每个商品的个数 然后对于每个物品k,都有n*m的矩阵 i行j列表示 从j提供商向i商店运送一个k商品的代价是多少 判断所有的仓库能否满足所有客户的需求,如果可以,求出最少的运输总费用 思路: 建图的题,不能直接把所有信息建成图,因为n和m跟k都有关系,如果那样子建图的话,就要把k种拆成m类,每个仓库连向该仓库的第k种,然后再和n连线,有费用, 不过这样

POJ 1459 Power Network(网络流 最大流 多起点,多汇点)

Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 22987   Accepted: 12039 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied

POJ 1273 Drainage Ditches(网络流 最大流)

Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 55893   Accepted: 21449 Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by

hdu 4289 Control(网络流 最大流+拆点)(模板)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4289 Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1545    Accepted Submission(s): 677 Problem Description You, the head of Department o

POJ 2455 Secret Milking Machine(搜索-二分,网络流-最大流)

Secret Milking Machine Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9658   Accepted: 2859 Description Farmer John is constructing a new milking machine and wishes to keep it secret as long as possible. He has hidden in it deep within

【bzoj1822】[JSOI2010]Frozen Nova 冷冻波 计算几何+二分+网络流最大流

题目描述 WJJ喜欢“魔兽争霸”这个游戏.在游戏中,巫妖是一种强大的英雄,它的技能Frozen Nova每次可以杀死一个小精灵.我们认为,巫妖和小精灵都可以看成是平面上的点. 当巫妖和小精灵之间的直线距离不超过R,且巫妖看到小精灵的视线没有被树木阻挡(也就是说,巫妖和小精灵的连线与任何树木都没有公共点)的话,巫妖就可以瞬间杀灭一个小精灵. 在森林里有N个巫妖,每个巫妖释放Frozen Nova之后,都需要等待一段时间,才能再次施放.不同的巫妖有不同的等待时间和施法范围,但相同的是,每次施放都可以