bzoj1233 干草堆 - 单调队列优化dp

问题描述:

  若有干个干草, 分别有各自的宽度, 要求将它们按顺序摆放, 并且每层的宽度不大于 它的下面一层 ,  求最多叠几层

题解:    

    zkw神牛证明了: 底边最短, 层数最高         证明:传送门

    接下来我们就可以根据这个结论进行dp。 前缀和sum, 以及 F[ i ]第 i 个数之后的干草叠起来后, 底层的最短宽度, 以及 H[ i ] 表示 第i个后的干草堆最高叠几层

    有转移方程 : F[ i ] = min( sum[ j - 1] - sum[i - 1] ) ( j > i && sum[ j - 1] - sum[ i - 1] >= f[ j ] )  由于前缀和从前往后是递增的, 所以 j 越小越好。

    又因为要满足 sum[ j - 1] - f[ j ] >= sum[ i - 1 ] , 所以 sum[ j - 1] - f[ j ] 越大越好, 可以用单调队列来使决策具有单调性, 每次取出队首就是最优决策

    

代码

  

 1 #include<cstring>
 2 #include<cstdio>
 3 #include<algorithm>
 4 #define rd read()
 5 #define rep(i,a,b) for( int i = (a); i <= (b); ++i )
 6 #define per(i,a,b) for( int i = (a); i >= (b); --i )
 7 using namespace std;
 8
 9 const int N = 1e5 + 1e4;
10
11 int n, a[N], sum[N], f[N], h[N], q[N];
12
13 int read() {
14     int X = 0, p = 1; char c = getchar();
15     for(; c > ‘9‘ || c < ‘0‘; c = getchar() ) if( c == ‘-‘ ) p = -1;
16     for(; c >= ‘0‘ && c <= ‘9‘; c = getchar() ) X = X * 10 + c - ‘0‘;
17     return X * p;
18 }
19
20 int main()
21 {
22     n = rd;
23     rep( i, 1, n ) sum[i] = sum[i - 1] + rd;
24     int l = 1, r = 1;
25     q[r] = n + 1;
26     sum[n + 1] = sum[n];
27     per( i, n, 1 ) {
28         while( l < r && f[ q[l + 1] ] <= sum[ q[l + 1] - 1] - sum[i - 1] ) l++;
29         f[i] = sum[ q[l] - 1] - sum[i - 1];
30         h[i] = h[q[l]] + 1;
31         while( l < r && sum[q[r] - 1] - f[q[r]] <= sum[i - 1] - f[i] ) r--;
32         q[++r] = i;
33     }
34     printf("%d\n",h[1]);
35 }

原文地址:https://www.cnblogs.com/cychester/p/9465332.html

时间: 2024-10-08 17:16:45

bzoj1233 干草堆 - 单调队列优化dp的相关文章

bzoj1233: [Usaco2009Open]干草堆tower 单调队列优化dp

又是一道单调队列优化dp的题目 这道题呢 先要了解一个结论,在多种可行的堆叠方案中,至少有一种能使层数最高的方案同时使得底边最短.即底边最短的,层数一定最高. 这个是zkw大神得出的 我也不会证明来着 反正这样之后我们就可以得出正确的方法了 递推式 F[i]=min(sum[j-1]-sum[i-1])  j>i 且 sum[j-1]-sum[i-1]>=F[j] 易得在满足的条件下j当然是越小越好了嘛 而这样得出的方程又满足一定的单调性 这样调整之后队首就是我们要的答案啦 又对于转移条件 f

HDU 4122 Alice&#39;s mooncake shop 单调队列优化dp

Alice's mooncake shop Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4122 Description The Mid-Autumn Festival, also known as the Moon Festival or Zhongqiu Festival is a popular harvest festival celebrated by Ch

Tyvj1305最大子序和(单调队列优化dp)

描述 输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大. 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7当m=2或m=3时,S=5+1=6 输入格式 第一行两个数n,m第二行有n个数,要求在n个数找到最大子序和 输出格式 一个数,数出他们的最大子序和 测试样例1 输入 6 4 1 -3 5 1 -2 3 输出 7 备注 数据范围:100%满足n,m<=300000 是不超过m,不是选m个!!!!! /* 单调队列优化dp 单调队列维护的是前

bzoj1855: [Scoi2010]股票交易--单调队列优化DP

单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w-1][k]+k*Ap[i]的单调性即可 1 #include<stdio.h> 2 #include<string.h> 3 #include<algorithm> 4 using namespace std; 5 const int maxn = 2010; 6 int

1855: [Scoi2010]股票交易[单调队列优化DP]

1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status][Discuss] Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi,第i天的股票卖出价为每股BPi(数据保证对于每个i,都有APi>=

BZOJ 1855 股票交易(单调队列优化DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1855 题意:最近lxhgww又迷上了投资股票, 通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi,第i天的股票卖出价为每股BPi(数据保证对于每 个i,都有APi>=BPi),但是每天不能无限制地交易,于是股票交易所规定第i天的一次买入至多只能购买ASi股,一次卖出至多只能卖出BS

【单调队列优化dp】uestc 594 我要长高

http://acm.uestc.edu.cn/#/problem/show/594 [AC] 1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 const int maxn=5e4+2; 5 const int inf=0x3f3f3f3f; 6 int n,c; 7 int cur; 8 int dp[2][maxn]; 9 int q[maxn]; 10 int main() 11 { 1

洛谷P1725 琪露诺 单调队列优化 DP

洛谷P1725 琪露诺 单调队列优化 DP 题意:1--n 每个点都有一个权值,从当前点i可以到达i+l--i+r 之间的点, 动态规划 方程 为 f[ i ] = max(f[ i ],f[ k ] ) +a[ i ] i-r<=k<=i-l 然而这样复杂度 就为 n^2 因为相当于 dp 是在求 一段区间的最大值,而这个最大值就可以用O(n) 来维护 注意 这个O(n) 是均摊O(n) 即将所有固定区间长度的 最大值求出来 是 O(n)的这样就把复杂度降到 O(n) 级别了 1 #incl

Parade(单调队列优化dp)

题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 902    Accepted Submission(s): 396 Problem Description Panagola, The Lord of city F lik