pandas DataFrame(1)

之前介绍了numpy的二维数组,但是numpy二维数组有一些局限性,比如,它数组里所有的值的类型必须相同,不能某一列是数值型,某一列是字符串型,这样会导致无法使用 mean() , std() 等方法去计算某一行或某一列.

但是,使用pandas DataFrame可以解决这一问题. pandas DataFrame也是二维数据,和pandas Series一样, pandas DataFrame也有‘索引‘这个概念,它每一列都有一个索引值:

import pandas as pd

df = pd.DataFrame({‘A‘: [0, 1, 2], ‘B‘: [3, 4, 5]})
print df

# 结果:
   A  B
0  0  3
1  1  4
2  2  5

其中 ‘A‘,‘B‘ 是索引值,  [0,1,2] ,  [3,4,5] 是索引对应的数据,也就是列

默认情况下,调用方法是在列上调用:

print df.sum()

# 结果:
A     3
B    12dtype: int64

返回一个pandas Series

如果需要在行上调用方法,可以设置 axis :

print df.sum(axis=1)

# 结果:
0    3
1    5
2    7dtype: int64

如果需要在整个DataFrame上调用方法,可以使用.values

print df.values.sum()

# 结果:
15

原文地址:https://www.cnblogs.com/liulangmao/p/9241469.html

时间: 2024-10-10 08:52:01

pandas DataFrame(1)的相关文章

pandas.DataFrame.plot

pandas.DataFrame.plot¶ DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xt

pandas.DataFrame学习系列2——函数方法(1)

DataFrame类具有很多方法,下面做用法的介绍和举例. pandas.DataFrame学习系列2--函数方法(1) 1.abs(),返回DataFrame每个数值的绝对值,前提是所有元素均为数值型 1 import pandas as pd 2 import numpy as np 3 4 df=pd.read_excel('南京银行.xlsx',index_col='Date') 5 df1=df[:5] 6 df1.iat[0,1]=-df1.iat[0,1] 7 df1 8 Open

pandas.DataFrame学习系列1——定义及属性

定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是pandas中主要的数据结构. 形式: class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) 参数含义: data : numpy ndarray(多维数组)(结构化或同质化的), dict(字典

Python pandas.DataFrame调整列顺序及修改index名

1. 从字典创建DataFrame >>> import pandas >>> dict_a = {'user_id':['webbang','webbang','webbang'],'book_id':['3713327','4074636','26873486'],'rating':['4','4','4'],'mark_date':['2017-03-07','2017-03-07','2017-03-07']} >>> df = pandas.

Python Pandas -- DataFrame

pandas.DataFrame class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)[source] Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations al

pandas DataFrame(2)-行列索引及值的获取

pandas DataFrame是二维的,所以,它既有列索引,又有行索引 上一篇里只介绍了列索引: import pandas as pd df = pd.DataFrame({'A': [0, 1, 2], 'B': [3, 4, 5]}) print df # 结果: A B 0 0 3 1 1 4 2 2 5 行索引自动生成了 0,1,2 如果要自己指定行索引和列索引,可以使用 index 和 column 参数: 这个数据是5个车站10天内的客流数据: ridership_df = pd

数据分析--pandas DataFrame

pandas DataFrame是一个表格类型的数据,含有一组有序的列,每列可以是不同的值类型(数值,字符串,布尔值).DataFrame即有行索引,也有列索引,可以看作由Series组成的字典(公用同一个索引). DataFrame是以一个或者多个二维块存放的(而不是列表,字典或别的一维数据结构) 构建DataFrame 传入一个等长列表或Numpy数组组成的字典 DataFrame会自动加上索引,且全部列会被有序排列 可以指定序列的排序 传入的列在数据中找不到,会产生Na值 从DataFra

pandas.DataFrame对行和列求和及添加新行和列

pandas.DataFrame对行和列求和及添加新行和列 导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A B C D E 0 0.673092 0.230338 -0.171681 0.31

pandas DataFrame(3)-轴

和numpy数组(5)-二维数组的轴一样,pandas DataFrame也有轴的概念,决定了方法是对行应用还是对列应用: 以下面这个数据为例说明: 这个数据是5个车站10天内的客流数据: ridership_df = pd.DataFrame( data=[[ 0, 0, 2, 5, 0], [1478, 3877, 3674, 2328, 2539], [1613, 4088, 3991, 6461, 2691], [1560, 3392, 3826, 4787, 2613], [1608,