建亿级前端读服务

从入职京东到现在,做读服务已经一年多的时间了,经历了各种亿级到百亿级的读服务;这段时间也进行了一些新的读服务架构尝试,从架构到代码的编写,各个环节都进行了反复尝试,压测并进行调优,希望得到一个自己满意的读服务架构。

一些设计原则

  • 无状态
  • 数据闭环
  • 缓存银弹
  • 并发化
  • 降级开关
  • 限流
  • 切流量
  • 其他

无状态

如果设计的应用是无状态的,那么应用就可以水平扩展,当然实际生产环境可能是这样子的: 应用无状态,配置文件有状态。比如不同的机房需要读取不同的数据源,此时就需要通过配置文件指定。

数据闭环

如果依赖的数据来源特别多,此时就可以考虑使用数据闭环,基本步骤:

1、数据异构:通过如MQ机制接收数据变更,然后原子化存储到合适的存储引擎,如redis或持久化KV存储;

2、数据聚合:这步是可选的,数据异构的目的是把数据从多个数据源拿过来,数据聚合目的是把这些数据做个聚合,这样前端就可以一个调用拿到所有数据,此步骤一般存储到KV存储中;

3、前端展示:前端通过一次或少量几次调用拿到所需要的数据。

这种方式的好处就是数据的闭环,任何依赖系统出问题了,还是能正常工作,只是更新会有积压,但是不影响前端展示。

另外此处如果一次需要多个数据,可以考虑使用Hash Tag机制将相关的数据聚合到一个实例,如在展示商品详情页时需要:商品基本信息:p:123:, 商品规格参数:d:123:,此时就可以使用冒号中间的123作为数据分片key,这样相同id的商品相关数据就在一个实例。

缓存银弹

缓存对于读服务来说可谓抗流量的银弹。

浏览器端缓存

设置请求的过期时间,如响应头Expires、Cache-control进行控制。这种机制适用于如对实时性不太敏感的数据,如商品详情页框架、商家评分、评价、广告词等;但对于如价格、库存等实时要求比较高的,就不能做浏览器端缓存。

CDN缓存

有些页面/活动页/图片等服务可以考虑将页面/活动页/图片推送到离用户最近的CDN节点让用户能在离他最近的节点找到想要的数据。一般有两种机制:推送机制(当内容变更后主动推送到CDN边缘节点),拉取机制(先访问边缘节点,当没有内容时回源到源服务器拿到内容并存储到节点上),两种方式各有利弊。 使用CDN时要考虑URL的设计,比如URL中不能有随机数,否则每次都穿透CDN,回源到源服务器,相当于CDN没有任何效果。对于爬虫可以返回过期数据而选择不回源。

接入层缓存

对于没有CDN缓存的应用来说,可以考虑使用如Nginx搭建一层接入层,该接入层可以考虑如下机制实现:

1、URL重写:将URL按照指定的顺序或者格式重写,去除随机数;

2、一致性哈希:按照指定的参数(如分类/商品编号)做一致性Hash,从而保证相同数据落到一台服务器上;

3、proxy_cache:使用内存级/SSD级代理缓存来缓存内容;

4、proxy_cache_lock:使用lock机制,将多个回源合并为一个,减少回源量,并设置相应的lock超时时间;

5、shared_dict:此处如果架构使用了nginx+lua实现,可以考虑使用lua shared_dict进行cache,最大的好处就是reload缓存不丢失。

此处要注意,对于托底/异常数据不应该让其缓存,否则用户会在很长一段时间看到这些数据。

应用层缓存

如我们使用Tomcat时可以使用堆内缓存/堆外缓存,堆内缓存的最大问题就是重启时内存中的缓存丢失,如果此时流量风暴来临可能冲垮应用;还可以考虑使用local redis cache来代替堆外内存;或者在接入层使用shared_dict来将缓存前置,减少风暴。

分布式缓存

一种机制就是废弃分布式缓存,改成应用local redis cache,即在应用所在服务器中部署一个redis,然后使用主从机制同步数据。如果数据量不大这种架构是最优的;如果数据量太大,单服务器存储不了,还可以考虑分片机制将流量分散到多台;或者直接就是分布式缓存实现。常见的分片规则就是一致性哈希了。


如上图就是我们一个应用的架构:

1、首先接入层读取本地proxy cache / local cache;

2、如果不命中,会读取分布式redis集群;

3、如果还不命中,会回源到tomcat,然后读取堆内cache;如果没有,则直接调用依赖业务获取数据;然后异步化写到redis集群;

因为我们使用了nginx+lua,第二、三步可以使用lua-resty-lock非阻塞锁减少峰值时的回源量;如果你的服务是用户维度的,这种非阻塞锁不会有什么大作用。

并发化

假设一个读服务是需要如下数据:

1、数据A  10ms

2、数据B  15ms

3、数据C   20ms

4、数据D   5ms

5、数据E   10ms

那么如果串行获取那么需要:60ms;

而如果数据C依赖数据A和数据B、数据D谁也不依赖、数据E依赖数据C;那么我们可以这样子来获取数据:

那么如果并发化获取那么需要:30ms;能提升一倍的性能。

假设数据E还依赖数据F(5ms),而数据F是在数据E服务中获取的,此时就可以考虑在此服务中在取数据A/B/D时预取数据F,那么整体性能就变为了:25ms。

降级开关

对于一个读服务,很重要的一个设计就是降级开关,在设计降级开关时主要如下思路:

1、开关集中化管理:通过推送机制把开关推送到各个应用;

2、可降级的多级读服务:比如只读本地缓存、只读分布式缓存、或者只读一个默认的降级数据;

3、开关前置化:如架构是nginx--->tomcat,可以将开关前置到nginx接入层,在nginx层做开关,请求不打到后端应用。

限流

目的是防止恶意流量,恶意攻击,可以考虑如下思路:

1、恶意流量只访问cache;

2、对于穿透到后端应用的可以考虑使用nginx的limit模块处理;

3、对于恶意ip可以使用如nginx deny进行屏蔽。

大部分时候是不进行接入层限流的,而是限制流量穿透到后端薄弱的应用层。

切流量

对于一个大型应用,切流量是非常重要的,比如多机房有机房挂了、或者有机架挂了、或者有服务器挂了等都需要切流量,可以使用如下手段进行切换:

1、DNS:切换机房入口;

2、LVS/HaProxy:切换故障的nginx接入层;

3、Nginx:切换故障的应用层;

另外我们有些应用为了更方便切换,还可以在nginx接入层做切换,通过nginx进行一些流量切换,而没有通过如LVS/HaProxy做切换。

其他

不需要cookie的应用使用无状态域名,如3.cn;

接入层请求头过滤,只转发有用的请求头到后端应用;

数据过滤逻辑前置,比如在接入层进行请求参数的合法性过滤;

内网设置合理的连接、读、写超时时间;

根据需要开启gzip压缩减少流量;

使用unix domain socket减少本机连接数;

内网考虑使用http长连接;

响应请求时,考虑响应头加上服务器ip等信息,方便调试。

我们处理的读服务大部分都是KV的,因此抗流量的思路就是大量缓存;而且怎么让缓存怎么更接近用户,离用户越近速度就越快。再一个点就是要考虑好降级方案,在异常情况下应用不被拖垮拖死。我们系统大量使用了如nginx+lua+redis技术,使用这些技术解决了我们很多读服务问题。

来源:ITeye

链接:http://jinnianshilongnian.iteye.com/blog/2232271

小编积累多年的干货文档免费赠送,包含前端后端和测试,系统架构,高并发处理,优化等

原文地址:https://www.cnblogs.com/xdclass/p/9473574.html

时间: 2024-10-10 17:28:52

建亿级前端读服务的相关文章

构建亿级前端读服务

从入职京东到现在,做读服务已经一年多的时间了,经历了各种亿级到百亿级的读服务:这段时间也进行了一些新的读服务架构尝试,从架构到代码的编写,各个环节都进行了反复尝试,压测并进行调优,希望得到一个自己满意的读服务架构. 一些设计原则 无状态 数据闭环 缓存银弹 并发化 降级开关 限流 切流量 其他 无状态 如果设计的应用是无状态的,那么应用就可以水平扩展,当然实际生产环境可能是这样子的: 应用无状态,配置文件有状态.比如不同的机房需要读取不同的数据源,此时就需要通过配置文件指定. 数据闭环 如果依赖

《亿级流量电商详情页系统实战:缓存架构+高可用服务架构+微服务架构》

视频教程:http://www.roncoo.com/course/view/af7d501667fe4a19a60e9467e6d2b3d9 升级说明: 该课程原本是123节课时,已于2017年7月份全部更新完毕.在原有123节课时的基础上,再免费新增70到80节左右的内容(注:课程大纲可能会做进一步优化,具体以最终更新为准),课程名将变更为<亿级流量电商详情页系统实战(第二版):缓存架构+高可用服务架构+微服务架构>简称第二版.本次免费新增内容将会从9月中旬开始更新,一直到10月底更新完毕

读&lt;阿里亿级日活网关通道架构演进&gt;有感

读<阿里亿级日活网关通道架构演进>时对优化方法有些概念不理解,特意搜索了一下,拓展自己的思路. 其中的优化: 优化方法中1,2比较常见,3,4我知道的比较少,很感兴趣.就继续追踪下去: 于是去网上搜索了ecdh和session-ticket及slight-ssl,其中slight-ssl是阿里自建的一套的技术. ecdh:ECC算法和DH结合使用,用于密钥磋商,这个密钥交换算法称为ECDH.交换双方可以在不共享任何秘密的情况下协商出一个密钥. session-ticket:在会话ticket复

从无到有构建亿级电商微服务优惠劵系统(真实工业界案例)

课程下载地址:https://pan.baidu.com/s/1SXaN8m38UWfRzyUGgVIazA 提取码:hsf0 本课程包含的技术:课程所用的开发环境为:Window7 开发工具是:IDEA Webstorm 本课程包含的技术:Spring Boot版本:2.0.2.RELEASESpring-Cloud版本:Finchley.RELEASEVue.js.Nodejs.Webpack. Maven.Nginx分布式部署.负载均衡等 优惠券作为一种常见的促销手段,其本质是经济学中的价

亿级流量电商详情页系统实战-缓存架构+高可用服务架构+微服务架构第二版视频教程

14套java精品高级架构课,缓存架构,深入Jvm虚拟机,全文检索Elasticsearch,Dubbo分布式Restful 服务,并发原理编程,SpringBoot,SpringCloud,RocketMQ中间件,Mysql分布式集群,服务架构,运 维架构视频教程 14套精品课程介绍: 1.14套精 品是最新整理的课程,都是当下最火的技术,最火的课程,也是全网课程的精品: 2.14套资 源包含:全套完整高清视频.完整源码.配套文档: 3.知识也 是需要投资的,有投入才会有产出(保证投入产出比是

从无到有构建亿级微服务秒杀系统

从无到有构建亿级微服务秒杀系统(真实工业界案例) 题取马:zuoz 课成滴志::https://pan.baidu.com/s/1yiNyYTbqMG4PWC4XBoYmJg 录制本套教程的初衷,通过从业10年接触过很多的技术开发人员,尤其在面试一些技术人员的时候,发现他们的技术知识更新较慢,很多人渴望接触到高并发系统和一些高级技术架构,为了帮助更多人能够提升自己和接触到这类技术架构,并满足企业的人才需求,利用业余时间开启了我录制这套教程.通过业余录制的课程有很多学员给我反馈信息,给了我很大的鼓

从100PV到1亿级PV网站架构演变

如果你对项目管理.系统架构有兴趣,请加微信订阅号"softjg",加入这个PM.架构师的大家庭 一个网站就像一个人,存在一个从小到大的过程.养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则.本文结合我自已14年网站人的经历记录一些架构演变中的体会. 1:积累是必不可少的 架构师不是一天练成的. 1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HT

亿级Web系统搭建:单机到分布式集群【转】

当一个Web系统从日访问量10万逐步增长到1000万,甚至超过1亿的过程中,Web系统承受的压力会越来越大,在这个过程中,我们会遇到很多的问题.为了解决这些性能压力带来问题,我们需要在Web系统架构层面搭建多个层次的缓存机制.在不同的压力阶段,我们会遇到不同的问题,通过搭建不同的服务和架构来解决. Web负载均衡 Web负载均衡(Load Balancing),简单地说就是给我们的服务器集群分配“工作任务”,而采用恰当的分配方式,对于保护处于后端的Web服务器来说,非常重要. 负载均衡的策略有很

从100PV到1亿级PV站点架构演变

假设你对项目管理.系统架构有兴趣,请加微信订阅号"softjg".增加这个PM.架构师的大家庭 一个站点就像一个人,存在一个从小到大的过程. 养一个站点和养一个人一样.不同一时候期须要不同的方法,不同的方法下有共同的原则. 本文结合我自已14年站点人的经历记录一些架构演变中的体会. 1:积累是不可缺少的 架构师不是一天练成的. 1999年,我作了一个个人主页,在学校内的虚拟空间,參加了一次主页大赛,几个DREAMWEAVER的页面.几个TABLE作布局,一个DB连接,几行PHP的代码嵌