欧拉函数解析

讲解了欧拉函数和一些模板的使用

https://www.cnblogs.com/PJQOOO/p/3875545.html

欧拉定理:  如果a与n互质的话,那就有a的n的欧拉数次方取余n等于1

缩系:就是由一个n,(1,n-1)内的所有和n互质的数组成的组合

原根:如果一个数的(0,m欧拉数-1)内次方%m组成的组合是缩系的话,那么我们就把他称为原根,下面是互相等价的

原文地址:https://www.cnblogs.com/Lis-/p/9387605.html

时间: 2024-10-08 09:05:57

欧拉函数解析的相关文章

√n求单值欧拉函数

基本定理: 首先看一下核心代码: 核心代码 原理解析: 当初我看不懂这段代码,主要有这么几个问题: 1.定理里面不是一开始写了一个n*xxx么?为什么代码里没有*n? 2.ans不是*(prime[i]-1)么?为什么到了第二个while循环变成*prime[i]了? 3.定理里面不是要/pi么?为什么代码里没有/pi????????????? 公式化简 首先我们来分析一下整个程序的原理,如果把程序的原理搞明白了,这三个问题也就自然而然的解决了 这个程序的原理是基于唯一分解定理: 那么我们可以把

HDU2588:GCD(欧拉函数的应用)

题目链接:传送门 题目需求:Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.(2<=N<=1000000000, 1<=M<=N), 题目解析: 求(X,N),不用想要分解N的因子,分解方法如下,我一开始直接分解for(int i=2;i<=n/2;i++),这样的话如果n==10^9,那么直接超时,因为这点失误直接浪费了一中午 的时间,要这么分解for(in

POJ2480:Longge&#39;s problem(欧拉函数的应用)

题目链接:传送门 题目需求: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N. 这题就是上一篇博客的变形. 题目解析:首先先求出与N互质的个数,即N的欧拉函数值,之后分解出N的因子来,求解方法如下. 证明: 要求有多少个 i 满足gcd(i, N) = d 如果gcd(i, N) = d,则gcd(i/d, N/d) = 1 由于i <= N,所以 i/d <= N/d,

HLG 1807 噢啦 (欧拉函数)

链接: http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=1807 Description 上个星期,小胖子学会了欧拉函数,他得意的说:"在a和b之间有多少个与c互素的数字,这样的简单题用欧拉就哦啦!" 可是这次三三又问小胖子,在a和b之间有多少个与c互素的数. Input 第一行包括一个整数t,代表测试次数(1<=1000). 接下来每一组测试次数输入a,b,c,满足

The Euler function(欧拉函数筛)

这题用欧拉函数会超时,要用函数筛. 解析:(转) 定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质的数的数目. 例如:φ(8)=4,因为1,3,5,7均和8互质. 性质:1.若p是质数,φ(p)= p-1. 2.若n是质数p的k次幂,φ(n)=(p-1)*p^(k-1).因为除了p的倍数都与n互质 3.欧拉函数是积性函数,若m,n互质,φ(mn)= φ(m)φ(n). 根据这3条性质我们就可以推出一个整数的欧拉函数的公式.因为一个数总可以写成一些质数的乘积的形式. E(k)=(p1

HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. 题目又说a==c==1,所以就是求[1,b]与[1,d]中gcd等于k的个数,因为若gcd(x,y)==z,那么gcd(x/z,y/z)==1,又因为不是z的倍数的肯定不是,所以不是z的倍数的可以直接去

欧拉函数

void Euler_Sieve_Method(int * euler, int n) { euler[1] = 1; for (int i = 2; i < n; i++) { euler[i] = i; } for (int i = 2; i < n; i++) { if (euler[i] == i) { for (int j = i; j < n; j += i) { euler[j] = euler[j] / i * (i - 1); } } } } void Euler_Si

hdu1695(莫比乌斯)或欧拉函数+容斥

题意:求1-b和1-d之内各选一个数组成数对,问最大公约数为k的数对有多少个,数对是有序的.(b,d,k<=100000) 解法1: 这个可以简化成1-b/k 和1-d/k 的互质有序数对的个数.假设b=b/k,d=d/k,b<=d.欧拉函数可以算出1-b与1-b之内的互质对数,然后在b+1到d的数i,求每个i在1-b之间有多少互质的数.解法是容斥,getans函数参数的意义:1-tool中含有rem位置之后的i的质因子的数的个数. 在 for(int j=rem;j<=factor[i

欧拉函数常用性质

欧拉函数定义:设n 为正整数,则1,2......,n中与n互质的整数个数记作f(n). 1.1 若n为素数,f(n)=n-1; 1.2 整数n=p*q,p,q为不同素数,则f(n)=f(p)*f(q)=(p-1)*(q-1) 1.3 n=p^a*q^b,f(n)=f(p^a)*f(q^b)=n*(1-1/p)*(1-1/q) 1.4 分解质因子相乘,f(n)=n*(1-1/p1)*(1-1/p2)*.......*(1-1/pk). f(100)=f(2^2*5^2)=100*1/2*4/5=