力扣337——打家劫舍 III

这一篇也是基于"打家劫舍"的扩展,需要针对特殊情况特殊考虑,当然其本质还是动态规划,优化时需要考虑数据结构。

原题

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。

计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。

示例 1:

输入: [3,2,3,null,3,null,1]

     3
    /    2   3
    \   \
     3   1

输出: 7
解释:?小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.

示例 2:

输入: [3,4,5,1,3,null,1]

?    3
    /    4   5
  / \   \
 1   3   1

输出: 9
解释:?小偷一晚能够盗取的最高金额?= 4 + 5 = 9.

原题url:https://leetcode-cn.com/problems/house-robber-iii/

解题

先给出树节点的结构:

public class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;
    TreeNode(int x) { val = x; }
}

简单思路

这道题简单来说,就是如果存在父节点、子节点、孙子节点三层的话,要么偷父节点 + 孙子节点,要么只偷子节点

顺着这个思路,我们只要找出每个节点所能偷到的最大值,自然也就能找出从 root 节点开始偷的最大值了。

接下来我们看看代码:

class Solution {

    Map<TreeNode, Integer> cache = new HashMap<>();

    public int rob(TreeNode root) {
        if (root == null) {
            return 0;
        }
        // 是否已经计算过
        if (cache.containsKey(root)) {
            return cache.get(root);
        }

        // 策略1:抢当前节点和孙子节点
        int sum1 = root.val +
            // 左子节点的子节点们
            (root.left == null ? 0 : (rob(root.left.left) + rob(root.left.right))) +
            // 右子节点的子节点们
            (root.right == null ? 0 : (rob(root.right.left) + rob(root.right.right)));
        // 策略2:只抢子节点
        int sum2 = rob(root.left) + rob(root.right);
        // 找出更大的值
        int sum = Math.max(sum1, sum2);
        // 并记录
        cache.put(root, sum);
        return sum;
    }
}

提交OK,执行用时:5 ms,只战胜了52.00%的 java 提交记录,因此还是有值得优化的地方。

优化

上面的解法,如果说有什么值得优化的地方,就是在于我们在动态规划时,不仅考虑了子节点,甚至也考虑到了孙子节点,因此当 子节点 变成 父节点 之后,孙子节点 也变成了 子节点。

也就是说,一开始的孙子节点被计算了两遍。虽然我们借用了一个 map 来记录了中间结果,但我们需要注意,这种情况依旧会被计算,只是代价被转移到了针对 map 的操作,这也是需要消耗时间的。

那么现在的优化,就转变成针对中间状态的记录上了。

其实我们针对每个节点的状态,只需要记录两种情况:抢或者不抢。而且这个状态只会被父节点用到,并不需要永久保留。因此我们考虑用一个长度为 2 的数组进行记录,这样就会快捷很多。

接下来我们看看代码:

class Solution {
    public int rob(TreeNode root) {
        // index为0,代表不抢当前节点的最大值
        // index为1,代表抢当前节点,不抢子节点的最大值
        int[] res = dp(root);
        return Math.max(res[0], res[1]);

    }

    public int[] dp(TreeNode cur) {
        if(cur == null) {
            return new int[]{0,0};
        }

        int[] left = dp(cur.left);
        int[] right = dp(cur.right);
        // 抢当前节点,子节点都不抢
        int rob = cur.val + left[0] +right[0];
        // 不抢当前节点,获取左右子节点各自的最大值
        int notRob = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
        // 返回结果
        return new int[]{notRob, rob};

    }
}

提交OK,时间消耗只有1 ms,确实快了很多。

总结

以上就是这道题目我的解答过程了,不知道大家是否理解了。这道题主要还是利用动态规划,只是需要大家进行思路转化,优化时需要考虑的更多是对数据结构的理解。

有兴趣的话可以访问我的博客或者关注我的公众号、头条号,说不定会有意外的惊喜。

https://death00.github.io/

公众号:健程之道

原文地址:https://www.cnblogs.com/death00/p/12232856.html

时间: 2024-10-09 10:49:55

力扣337——打家劫舍 III的相关文章

337. 打家劫舍 III

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区.这个地区只有一个入口,我们称之为“根”. 除了“根”之外,每栋房子有且只有一个“父“房子与之相连.一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”. 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警. 计算在不触动警报的情况下,小偷一晚能够盗取的最高金额. 示例 1: 输入: [3,2,3,null,3,null,1] 3 / \ 2 3 \ \ 3 1 输出: 7 解释: 小偷一晚能够盗取

[LeetCode] 337. 打家劫舍 III (树形dp)

题目 在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区.这个地区只有一个入口,我们称之为"根". 除了"根"之外,每栋房子有且只有一个"父"房子与之相连.一番侦察之后,聪明的小偷意识到"这个地方的所有房屋的排列类似于一棵二叉树". 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警. 计算在不触动警报的情况下,小偷一晚能够盗取的最高金额. 示例 1: 输入: [3,2,3,null,3,null,1

[LeetCode] 337. 打家劫舍III ☆☆☆(动态规划)

https://leetcode-cn.com/problems/house-robber-iii/solution/tong-yong-si-lu-tuan-mie-da-jia-jie-she-wen-ti-b-2/ 描述 在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区.这个地区只有一个入口,我们称之为“根”. 除了“根”之外,每栋房子有且只有一个“父“房子与之相连.一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”. 如果两个直接相连的房子在

Leetcode 337. 打家劫舍 III

/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: struct returnData { int qu; int buqu; returnData(int

337. 打家劫舍 III(树上dp)

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区.这个地区只有一个入口,我们称之为“根”. 除了“根”之外,每栋房子有且只有一个“父“房子与之相连.一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”. 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警. 计算在不触动警报的情况下,小偷一晚能够盗取的最高金额. 示例 1: 输入: [3,2,3,null,3,null,1] 3    / \   2   3    \   \      3   1

力扣198——打家劫舍

这次准备连讲三道题,这道题就是最基础的,利用动态规划可以解决. 原题 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额. 示例 : 输入: [1,2,3,1] 输出: 4 解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3). ? 偷

力扣第260题 只出现一次的数字 III

力扣第260题 只出现一次的数字 III 给定一个整数数组 nums,其中恰好有两个元素只出现一次,其余所有元素均出现两次. 找出只出现一次的那两个元素. 示例 : 输入: [1,2,1,3,2,5] 输出: [3,5] 注意: 结果输出的顺序并不重要,对于上面的例子, [5, 3] 也是正确答案. 你的算法应该具有线性时间复杂度.你能否仅使用常数空间复杂度来实现? class Solution { public: vector<int> singleNumber(vector<int&

卡特兰数(Catalan number)-力扣96

卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名,其前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 244662

力扣算法题—042接雨水

1 #include"000库函数.h" 2 //一点头绪都没有 3 //然后就自己按自己的意思来一遍 4 //好像没有用算法 5 //16ms,让我激动一把 6 7 class Solution { 8 public: 9 int trap(vector<int>& height) { 10 if (height.size() < 2)return 0; 11 int s = 0;//起始点 12 int e = 0;//终止点 13 int v = 0;/