浅述python中argsort()函数的用法
(1).先定义一个array数据
1 import numpy as np 2 x=np.array([1,4,3,-1,6,9])
(2).现在我们可以看看argsort()函数的具体功能是什么:
x.argsort()
输出定义为y=array([3,0,2,1,4,5])。
我们发现argsort()函数是将x中的元素从小到大排列,提取其对应的index(索引),然后输出到y。例如:x[3]=-1最小,所以y[0]=3,x[5]=9最大,所以y[5]=5。
上面这个不难理解,不熟悉的可以去python环境下自己尝试。
(3).由于在程序中遇到了类似于np.argsort()[num]的形式,一直看不明白,就自己去python环境自己试了下:
ps:这里的num的绝对值小于等于x中元素的个数
当num>=0时,np.argsort()[num]就可以理解为y[num];
当num<0时,np.argsort()[num]就是把数组y的元素反向输出,例如np.argsort()[-1]即输出x中最大值对应的index,np.argsort()[-2]即输出x中第二大值对应的index,依此类推。。
直观的实验才能看到效果,下面是我拿上面例子做的验证:
这是当num为负值时的输出。
这个是num>=0时的输出。
2.Python-Numpy的tile函数用法
(1).函数的定义与说明
函数格式tile(A,reps)
A和reps都是array_like
A的类型众多,几乎所有类型都可以:array, list, tuple, dict, matrix以及基本数据类型int, string, float以及bool类型。
reps的类型也很多,可以是tuple,list, dict, array, int, bool.但不可以是float, string, matrix类型。
(2).函数操作示例
>>> tile(1,2) array([1, 1])
>>> tile((1,2,3),3) array([1, 2, 3, 1, 2, 3, 1, 2, 3])
>>> tile(a,2) array([[1, 2, 3, 1, 2, 3], [4, 5, 5, 4, 5, 5]])
>>> b=[1,3,5] >>> tile(b,[2,3]) array([[1, 3, 5, 1, 3, 5, 1, 3, 5], [1, 3, 5, 1, 3, 5, 1, 3, 5]])
>>> a=[[1,2,3],[5,4]] >>> tile(a,[2,3]) array([[[1, 2, 3], [5, 4], [1, 2, 3], [5, 4], [1, 2, 3], [5, 4]], [[1, 2, 3], [5, 4], [1, 2, 3], [5, 4], [1, 2, 3], [5, 4]]])
3.python的二维数组操作
需要在程序中使用二维数组,网上找到一种这样的用法:
#创建一个宽度为3,高度为4的数组 #[[0,0,0], # [0,0,0], # [0,0,0], # [0,0,0]] myList = [[0] * 3] * 4
但是当操作myList[0][1] = 1时,发现整个第二列都被赋值,变成
[[0,1,0],
[0,1,0],
[0,1,0],
[0,1,0]]
为什么...一时搞不懂,后面翻阅The Python Standard Library 找到答案
list * n—>n shallow copies of list concatenated, n个list的浅拷贝的连接
例:
>>> lists = [[]] * 3 >>> lists [[], [], []] >>> lists[0].append(3) >>> lists [[3], [3], [3]]
[[]]是一个含有一个空列表元素的列表,所以[[]]*3表示3个指向这个空列表元素的引用,修改任何
一个元素都会改变整个列表:
所以需要用另外一种方式进行创建多维数组,以免浅拷贝:
>>> lists = [[] for i in range(3)] >>> lists[0].append(3) >>> lists[1].append(5) >>> lists[2].append(7) >>> lists [[3], [5], [7]]
之前的二维数组创建方式为:
myList = [([0] * 3) for i in range(4)
4.python zeros()使用(from numpy import *)
该函数的功能是创建给定类型的矩阵,并初始化为0。
#一维数组 zeros(3) #二维数组 zeros((2,3)) #或 zeros([2,3])
dtype:数组数据类型,默认为float
#使用默认类型 b=zeros(3) type(b) #转换为int类型 b=zeros(3) type(b)
zeros_like:返回和输入大小相同,类型相同,用0填满的数组
<pre name="code" class="python">#一维 a=array([2,3]) zeros_like(a) #二维 a=array([[2,3],[3,4]]) zeros_like(a)
ones_like:返回和输入大小相同,数据类型相同,用1填满的数组
#一维 a=array([2,3]) ones_like(a) #二维 a=array([[2,3],[3,4]]) ones_like(a)
empty_like:返回和输入大小相同,数据类型相同,但是是未初始化的数组(数据随机)
#一维 a=array([2,3]) empty_like(a) empty_like(a, int) #二维 a=array([[2,3],[3,4]]) empty_like(a) empty_like(a, int)
ones:返回一个和输入大小相同,数据类型相同,初始化为1的数组
np.ones(5) np.ones((2,1)) s=(2,2) np.ones(s)
empty:返回一个新的未初始化的数组
np.empty([2,2]) np.empty([2,2],dtype=int)
原文地址:https://www.cnblogs.com/cmybky/p/11772488.html