python爬虫入门(四)利用多线程爬虫

多线程爬虫

先回顾前面学过的一些知识

1.一个cpu一次只能执行一个任务,多个cpu同时可以执行多个任务
2.一个cpu一次只能执行一个进程,其它进程处于非运行状态
3.进程里包含的执行单元叫线程,一个进程可以包含多个线程
4.一个进程的内存空间是共享的,每个进程里的线程都可以使用这个共享空间
5.一个线程在使用这个共享空间的时候,其它的线程必须等待(阻塞状态)
6.互斥锁作用就是防止多个线程同时使用这块内存空间,先使用的线程会将空间上锁,其它的线程处于等待状态。等锁开了才能进
7.进程:表示程序的一次执行
8.线程:CPU运算的基本调度单位
9.GIL(全局锁):python里的执行通行证,而且只有一个。拿到通行证的线程就可以进入CPU执行任务。没有GIL的线程就不能执行任务
10.python的多线程适用于大量密集的I/O处理
11.python的多进程适用于大量的密集并行计算

多线程爬取糗事百科

#!/usr/bin/env python
# -*- coding:utf-8 -*-

# 使用了线程库
import threading
# 队列
from Queue import Queue
# 解析库
from lxml import etree
# 请求处理
import requests
# json处理
import json
import time

class ThreadCrawl(threading.Thread):
    def __init__(self, threadName, pageQueue, dataQueue):
        #threading.Thread.__init__(self)
        # 调用父类初始化方法
        super(ThreadCrawl, self).__init__()
        # 线程名
        self.threadName = threadName
        # 页码队列
        self.pageQueue = pageQueue
        # 数据队列
        self.dataQueue = dataQueue
        # 请求报头
        self.headers = {‘User-Agent‘:‘Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.101 Safari/537.36‘}

    def run(self):
        print "启动 " + self.threadName
        while not CRAWL_EXIT:
            try:
                # 取出一个数字,先进先出
                # 可选参数block,默认值为True
                #1. 如果对列为空,block为True的话,不会结束,会进入阻塞状态,直到队列有新的数据
                #2. 如果队列为空,block为False的话,就弹出一个Queue.empty()异常,
                page = self.pageQueue.get(False)
                url = "http://www.qiushibaike.com/8hr/page/" + str(page) +"/"
                #print url
                content = requests.get(url, headers = self.headers).text
                time.sleep(1)
                self.dataQueue.put(content)
                #print len(content)
            except:
                pass
        print "结束 " + self.threadName

class ThreadParse(threading.Thread):
    def __init__(self, threadName, dataQueue, filename, lock):
        super(ThreadParse, self).__init__()
        # 线程名
        self.threadName = threadName
        # 数据队列
        self.dataQueue = dataQueue
        # 保存解析后数据的文件名
        self.filename = filename
        # 锁
        self.lock = lock

    def run(self):
        print "启动" + self.threadName
        while not PARSE_EXIT:
            try:
                html = self.dataQueue.get(False)
                self.parse(html)
            except:
                pass
        print "退出" + self.threadName

    def parse(self, html):
        # 解析为HTML DOM
        html = etree.HTML(html)

        node_list = html.xpath(‘//div[contains(@id, "qiushi_tag")]‘)

        for node in node_list:
            # xpath返回的列表,这个列表就这一个参数,用索引方式取出来,用户名
            username = node.xpath(‘./div/a/@title‘)[0]
            # 图片连接
            image = node.xpath(‘.//div[@class="thumb"]//@src‘)#[0]
            # 取出标签下的内容,段子内容
            content = node.xpath(‘.//div[@class="content"]/span‘)[0].text
            # 取出标签里包含的内容,点赞
            zan = node.xpath(‘.//i‘)[0].text
            # 评论
            comments = node.xpath(‘.//i‘)[1].text

            items = {
                "username" : username,
                "image" : image,
                "content" : content,
                "zan" : zan,
                "comments" : comments
            }

            # with 后面有两个必须执行的操作:__enter__ 和 _exit__
            # 不管里面的操作结果如何,都会执行打开、关闭
            # 打开锁、处理内容、释放锁
            with self.lock:
                # 写入存储的解析后的数据
                self.filename.write(json.dumps(items, ensure_ascii = False).encode("utf-8") + "\n")

CRAWL_EXIT = False
PARSE_EXIT = False

def main():
    # 页码的队列,表示20个页面
    pageQueue = Queue(20)
    # 放入1~10的数字,先进先出
    for i in range(1, 21):
        pageQueue.put(i)

    # 采集结果(每页的HTML源码)的数据队列,参数为空表示不限制
    dataQueue = Queue()

    filename = open("duanzi.json", "a")
    # 创建锁
    lock = threading.Lock()

    # 三个采集线程的名字
    crawlList = ["采集线程1号", "采集线程2号", "采集线程3号"]
    # 存储三个采集线程的列表集合
    threadcrawl = []
    for threadName in crawlList:
        thread = ThreadCrawl(threadName, pageQueue, dataQueue)
        thread.start()
        threadcrawl.append(thread)

    # 三个解析线程的名字
    parseList = ["解析线程1号","解析线程2号","解析线程3号"]
    # 存储三个解析线程
    threadparse = []
    for threadName in parseList:
        thread = ThreadParse(threadName, dataQueue, filename, lock)
        thread.start()
        threadparse.append(thread)

    # 等待pageQueue队列为空,也就是等待之前的操作执行完毕
    while not pageQueue.empty():
        pass

    # 如果pageQueue为空,采集线程退出循环
    global CRAWL_EXIT
    CRAWL_EXIT = True

    print "pageQueue为空"

    for thread in threadcrawl:
        thread.join()
        print "1"

    while not dataQueue.empty():
        pass

    global PARSE_EXIT
    PARSE_EXIT = True

    for thread in threadparse:
        thread.join()
        print "2"

    with lock:
        # 关闭文件
        filename.close()
    print "谢谢使用!"

if __name__ == "__main__":
    main()

原文地址:https://www.cnblogs.com/gaidy/p/12095684.html

时间: 2024-10-10 09:49:46

python爬虫入门(四)利用多线程爬虫的相关文章

转 Python爬虫入门四之Urllib库的高级用法

静觅 » Python爬虫入门四之Urllib库的高级用法 1.设置Headers 有些网站不会同意程序直接用上面的方式进行访问,如果识别有问题,那么站点根本不会响应,所以为了完全模拟浏览器的工作,我们需要设置一些Headers 的属性. 首先,打开我们的浏览器,调试浏览器F12,我用的是Chrome,打开网络监听,示意如下,比如知乎,点登录之后,我们会发现登陆之后界面都变化了,出现一个新的界面,实质上这个页面包含了许许多多的内容,这些内容也不是一次性就加载完成的,实质上是执行了好多次请求,一般

Requests爬虫和scrapy框架多线程爬虫

1.基于Requests和BeautifulSoup的单线程爬虫 1.1 BeautifulSoup用法总结 1. find,获取匹配的第一个标签 tag = soup.find('a') print(tag) tag = soup.find(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie') tag = soup.find(name='a', class_='sister', recursive=True, te

[转载]Python爬虫入门四之Urllib库的高级用法

转自:http://cuiqingcai.com/954.html 1.设置Headers 有些网站不会同意程序直接用上面的方式进行访问,如果识别有问题,那么站点根本不会响应,所以为了完全模拟浏览器的工作,我们需要设置一些Headers 的属性. 首先,打开我们的浏览器,调试浏览器F12,我用的是Chrome,打开网络监听,示意如下,比如知乎,点登录之后,我们会发现登陆之后界面都变化了,出现一个新的界面,实质上这个页面包含了许许多多的内容,这些内容也不是一次性就加载完成的,实质上是执行了好多次请

4.Python爬虫入门之二之爬虫基础了解

1.什么是爬虫 爬虫,即网络爬虫,大家可以理解为在网络上爬行的一只蜘蛛,互联网就比作一张大网,而爬虫便是在这张网上爬来爬去的蜘蛛,如果它遇到资源,那么它就会抓取下来.想抓取什么,就靠你自己去控制它. 比如它在抓取一个网页,在这个网中它发现了一条道路,其实就是指向网页的超链接,那么它就可以爬虫另一张网上来获取数据.这样,整个连在一起的大网对这只蜘蛛来说触手可及,爬下来都不是什么难事. 2.浏览网页的过程 在用户浏览网页的过程中,我们可能会看到许多好多的照片,比如 http://image.baid

大数据之网络爬虫-一个简单的多线程爬虫

   本文介绍一个简单的多线程并发爬虫,这里说的简单是指爬取的数据规模不大,单机运行,并且不使用数据库,但保证多线程下的数据的一致性,并且能让爬得正起劲的爬虫停下来,而且能保存爬取状态以备下次继续. 爬虫实现的步骤基本如下: 分析网页结构,选取自己感兴趣的部分; 建立两个Buffer,一个用于保存已经访问的URL,一个用户保存带访问的URL; 从待访问的Buffer中取出一个URL来爬取,保存这个URL中感兴趣的信息:并将这个URL加入已经访问的Buffer中,然后将这个URL中的所有外链URL

11.python并发入门(part9 多线程模块multiprocessing基本用法)

一.回顾多继承的概念. 由于GIL(全局解释器锁)的存在,在python中无法实现真正的多线程(一个进程里的多个线程无法在cpu上并行执行),如果想充分的利用cpu的资源,在python中需要使用进程. 二.multiprocessing模块的简介. multiprocessing是python中用来管理多进程的包,与threading用法非常类似,它主要使用multiprocessing.Process对象来创建一个进程对象,该进程可以运行在python的函数中. 该Process(进程)对象

Python基础入门 (四)

一.迭代器&生成器 1.迭代器仅仅是一容器对象,它实现了迭代器协议.它有两个基本方法: 1)next 方法 返回容器的下一个元素 2)_iter_方法 返回迭代器自身.迭代器可以使用内建的iter方法创建 ts = iter(['asd','sds','qweq']) #创建iter方法 print(ts.__next__()) #使用_next_方法返回下一个元素 print(ts.__next__()) print(ts.__next__()) #运行结果 asd sds qweq#需要注意

11.python并发入门(part3 多线程与互斥锁)

一.锁的概念. 锁,通常被用来实现共享数据的访问,为每一个共享的数据,创建一个Lock对象(一把锁),当需要访问这个共享的资源时,可以调用acquire方法来获取一个锁的对象,当共享资源访问结束后,在调用release方法去解锁. 二.python中的互斥锁. 在介绍互斥锁之前,先来一起看一个例子.(每个线程对num实现一次-1的操作) import threading import  time num = 200  #每个线程都共享这个变量. tread_list = [] def count

爬虫入门-5-1.正则表达式在爬虫中的应用

1.爬取百思不得姐段子 1 import requests 2 import re 3 4 5 def parse_url(url): 6 headers = { 7 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) ' 8 'AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36' 9 } 10 response = requests.ge