Java多线程之ThreadPoolExecutor详解使用

1、概述

我将讲解JAVA原生线程池的基本使用,并由此延伸出JAVA中和线程管理相关的类结构体系,然后我们详细描述JAVA原生线程池的结构和工作方式

2、为什么要使用线程池

前文我们已经讲到,线程是一个操作系统概念。操作系统负责这个线程的创建、挂起、运行、阻塞和终结操作。而操作系统创建线程、切换线程状态、终结线程都要进行CPU调度。

另一方面,目前大多数生产环境我们所面临问题的技术背景一般是:处理某一次请求的时间是非常短暂的,但是请求数量是巨大的。这种技术背景下,如果我们为每一个请求都单独创建一个线程,那么物理机的所有资源基本上都被操作系统创建线程、切换线程状态、销毁线程这些操作所占用,用于业务请求处理的资源反而减少了。所以最理想的处理方式是,将处理请求的线程数量控制在一个范围,既保证后续的请求不会等待太长时间,又保证物理机将足够的资源用于请求处理本身。

另外,一些操作系统是有最大线程数量限制的。当运行的线程数量逼近这个值的时候,操作系统会变得不稳定。这也是我们要限制线程数量的原因。

3、线程池的基本使用方式

JAVA语言为我们提供了两种基础线程池的选择:ScheduledThreadPoolExecutor和ThreadPoolExecutor。它们都实现了ExecutorService接口(注意,ExecutorService接口本身和“线程池”并没有直接关系,它的定义更接近“执行器”,而“使用线程管理的方式进行实现”只是其中的一种实现方式)。这篇文章中,我们主要围绕ThreadPoolExecutor类进行讲解。

3-1、简单使用

首先我们来看看ThreadPoolExecutor类的最简单使用方式:

  1. package test.thread.pool;

  2.  

  3.  

    import java.util.concurrent.SynchronousQueue;

  4.  

    import java.util.concurrent.ThreadPoolExecutor;

  5.  

    import java.util.concurrent.TimeUnit;

  6.  

  7.  

    import org.apache.commons.logging.Log;

  8.  

    import org.apache.commons.logging.LogFactory;

  9.  

    import org.apache.log4j.BasicConfigurator;

  10.  

  11.  

    public class PoolThreadSimple {

  12.  

  13.  

    static {

  14.  

    BasicConfigurator.configure();

  15.  

    }

  16.  

  17.  

    public static void main(String[] args) throws Throwable {

  18.  

  19.  

    /*

  20.  

    * corePoolSize:核心大小,线程池初始化的时候,就会有这么大

  21.  

    * maximumPoolSize:线程池最大线程数

  22.  

    * keepAliveTime:如果当前线程池中线程数大于corePoolSize。

  23.  

    * 多余的线程,在等待keepAliveTime时间后如果还没有新的线程任务指派给它,它就会被回收

  24.  

    *

  25.  

    * unit:等待时间keepAliveTime的单位

  26.  

    *

  27.  

    * workQueue:等待队列。这个对象的设置是本文将重点介绍的内容

  28.  

    * */

  29.  

    ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(5, 10, 1, TimeUnit.MINUTES, new SynchronousQueue<Runnable>());

  30.  

    for(int index = 0 ; index < 10 ; index ++) {

  31.  

    poolExecutor.submit(new PoolThreadSimple.TestRunnable(index));

  32.  

    }

  33.  

  34.  

    // 没有特殊含义,只是为了保证main线程不会退出

  35.  

    synchronized (poolExecutor) {

  36.  

    poolExecutor.wait();

  37.  

    }

  38.  

    }

  39.  

  40.  

    /**

  41.  

    * 这个就是测试用的线程

  42.  

    * @author yinwenjie

  43.  

    */

  44.  

    private static class TestRunnable implements Runnable {

  45.  

  46.  

    /**

  47.  

    * 日志

  48.  

    */

  49.  

    private static Log LOGGER = LogFactory.getLog(TestRunnable.class);

  50.  

  51.  

    /**

  52.  

    * 记录任务的唯一编号,这样在日志中好做识别

  53.  

    */

  54.  

    private Integer index;

  55.  

  56.  

    public TestRunnable(int index) {

  57.  

    this.index = index;

  58.  

    }

  59.  

  60.  

    /**

  61.  

    * @return the index

  62.  

    */

  63.  

    public Integer getIndex() {

  64.  

    return index;

  65.  

    }

  66.  

  67.  

    @Override

  68.  

    public void run() {

  69.  

    /*

  70.  

    * 线程中,就只做一件事情:

  71.  

    * 等待60秒钟的事件,以便模拟业务操作过程

  72.  

    * */

  73.  

    Thread currentThread = Thread.currentThread();

  74.  

    TestRunnable.LOGGER.info("线程:" + currentThread.getId() + " 中的任务(" + this.getIndex() + ")开始执行===");

  75.  

    synchronized (currentThread) {

  76.  

    try {

  77.  

    currentThread.wait(60000);

  78.  

    } catch (InterruptedException e) {

  79.  

    TestRunnable.LOGGER.error(e.getMessage(), e);

  80.  

    }

  81.  

    }

  82.  

  83.  

    TestRunnable.LOGGER.info("线程:" + currentThread.getId() + " 中的任务(" + this.getIndex() + ")执行完成");

  84.  

    }

  85.  

  86.  

    }

  87.  

    }

随后的文章中我们将对线程池中的corePoolSize、maximumPoolSize、keepAliveTime、timeUnit、workQueue、threadFactory、handler参数和一些常用/不常用的设置项进行逐一讲解。

3-2、ThreadPoolExecutor逻辑结构和工作方式

在上面的代码中,我们创建线程池的时候使用了ThreadPoolExecutor中最简单的一个构造函数:

  1. public ThreadPoolExecutor(int corePoolSize,

  2.  

    int maximumPoolSize,

  3.  

    long keepAliveTime,

  4.  

    TimeUnit unit,

  5.  

    BlockingQueue<Runnable> workQueue)

  • 构造函数中需要传入的参数包括corePoolSize、maximumPoolSize、keepAliveTime、timeUnit和workQueue。要明确理解这些参数(和后续将要介绍的参数)的含义,就首先要搞清楚ThreadPoolExecutor线程池的逻辑结构。

一定要注意一个概念,即存在于线程池中容器的一定是Thread对象,而不是您要求运行的任务(所以叫线程池而不叫任务池也不叫对象池,更不叫游泳池);您要求运行的任务将被线程池分配给某一个空闲的Thread运行。

从上图中,我们可以看到构成线程池的几个重要元素:

  • 等待队列:顾名思义,就是您调用线程池对象的submit()方法或者execute()方法,要求线程池运行的任务(这些任务必须实现Runnable接口或者Callable接口)。但是出于某些原因线程池并没有马上运行这些任务,而是送入一个队列等待执行(这些原因后文马上讲解)。
  • 核心线程:线程池主要用于执行任务的是“核心线程”,“核心线程”的数量是您创建线程时所设置的corePoolSize参数决定的。如果不进行特别的设定,线程池中始终会保持corePoolSize数量的线程数(不包括创建阶段)。
  • 非核心线程:一旦任务数量过多(由等待队列的特性决定),线程池将创建“非核心线程”临时帮助运行任务。您设置的大于corePoolSize参数小于maximumPoolSize参数的部分,就是线程池可以临时创建的“非核心线程”的最大数量。这种情况下如果某个线程没有运行任何任务,在等待keepAliveTime时间后,这个线程将会被销毁,直到线程池的线程数量重新达到corePoolSize。
  • 要重点理解上一条描述中黑体字部分的内容。也就是说,并不是所谓的“非核心线程”才会被回收;而是谁的空闲时间达到keepAliveTime这个阀值,就会被回收。直到线程池中线程数量等于corePoolSize为止。
  • maximumPoolSize参数也是当前线程池允许创建的最大线程数量。那么如果您设置的corePoolSize参数和您设置的maximumPoolSize参数一致时,线程池在任何情况下都不会回收空闲线程。keepAliveTime和timeUnit也就失去了意义。
  • keepAliveTime参数和timeUnit参数也是配合使用的。keepAliveTime参数指明等待时间的量化值,timeUnit指明量化值单位。例如keepAliveTime=1,timeUnit为TimeUnit.MINUTES,代表空闲线程的回收阀值为1分钟。

说完了线程池的逻辑结构,下面我们讨论一下线程池是怎样处理某一个运行任务的。下图描述了一个完整的任务处理过程:

1、首先您可以通过线程池提供的submit()方法或者execute()方法,要求线程池执行某个任务。线程池收到这个要求执行的任务后,会有几种处理情况:

1.1、如果当前线程池中运行的线程数量还没有达到corePoolSize大小时,线程池会创建一个新的线程运行您的任务,无论之前已经创建的线程是否处于空闲状态。

1.2、如果当前线程池中运行的线程数量已经达到设置的corePoolSize大小,线程池会把您的这个任务加入到等待队列中。直到某一个的线程空闲了,线程池会根据您设置的等待队列规则,从队列中取出一个新的任务执行。

1.3、如果根据队列规则,这个任务无法加入等待队列。这时线程池就会创建一个“非核心线程”直接运行这个任务。注意,如果这种情况下任务执行成功,那么当前线程池中的线程数量一定大于corePoolSize。

1.4、如果这个任务,无法被“核心线程”直接执行,又无法加入等待队列,又无法创建“非核心线程”直接执行,且您没有为线程池设置RejectedExecutionHandler。这时线程池会抛出RejectedExecutionException异常,即线程池拒绝接受这个任务。(实际上抛出RejectedExecutionException异常的操作,是ThreadPoolExecutor线程池中一个默认的RejectedExecutionHandler实现:AbortPolicy,这在后文会提到)

2、一旦线程池中某个线程完成了任务的执行,它就会试图到任务等待队列中拿去下一个等待任务(所有的等待任务都实现了BlockingQueue接口,按照接口字面上的理解,这是一个可阻塞的队列接口),它会调用等待队列的poll()方法,并停留在哪里。

3、当线程池中的线程超过您设置的corePoolSize参数,说明当前线程池中有所谓的“非核心线程”。那么当某个线程处理完任务后,如果等待keepAliveTime时间后仍然没有新的任务分配给它,那么这个线程将会被回收。线程池回收线程时,对所谓的“核心线程”和“非核心线程”是一视同仁的,直到线程池中线程的数量等于您设置的corePoolSize参数时,回收过程才会停止。

3-3、不常用的设置

在ThreadPoolExecutor线程池中,有一些不常用的设置。我建议如果您在应用场景中没有特殊的要求,就不需要使用这些设置:

3-3-1、 allowCoreThreadTimeOut:

前文我们讨论到,线程池回收线程只会发生在当前线程池中线程数量大于corePoolSize参数的时候;当线程池中线程数量小于等于corePoolSize参数的时候,回收过程就会停止。

allowCoreThreadTimeOut设置项可以要求线程池:将包括“核心线程”在内的,没有任务分配的任何线程,在等待keepAliveTime时间后全部进行回收:

  1. ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(5, 10, 1, TimeUnit.MINUTES, new ArrayBlockingQueue<Runnable>(1));

  2.  

  3.  

    poolExecutor.allowCoreThreadTimeOut(true);

以下是设置前的效果:

以下是设置后的效果:

3-3-2 prestartAllCoreThreads

前文我们还讨论到,当线程池中的线程还没有达到您设置的corePoolSize参数值的时候,如果有新的任务到来,线程池将创建新的线程运行这个任务,无论之前已经创建的线程是否处于空闲状态。这个描述可以用下面的示意图表示出来:

prestartAllCoreThreads设置项,可以在线程池创建,但还没有接收到任何任务的情况下,先行创建符合corePoolSize参数值的线程数:

1、概述

我将讲解JAVA原生线程池的基本使用,并由此延伸出JAVA中和线程管理相关的类结构体系,然后我们详细描述JAVA原生线程池的结构和工作方式

2、为什么要使用线程池

前文我们已经讲到,线程是一个操作系统概念。操作系统负责这个线程的创建、挂起、运行、阻塞和终结操作。而操作系统创建线程、切换线程状态、终结线程都要进行CPU调度。

另一方面,目前大多数生产环境我们所面临问题的技术背景一般是:处理某一次请求的时间是非常短暂的,但是请求数量是巨大的。这种技术背景下,如果我们为每一个请求都单独创建一个线程,那么物理机的所有资源基本上都被操作系统创建线程、切换线程状态、销毁线程这些操作所占用,用于业务请求处理的资源反而减少了。所以最理想的处理方式是,将处理请求的线程数量控制在一个范围,既保证后续的请求不会等待太长时间,又保证物理机将足够的资源用于请求处理本身。

另外,一些操作系统是有最大线程数量限制的。当运行的线程数量逼近这个值的时候,操作系统会变得不稳定。这也是我们要限制线程数量的原因。

3、线程池的基本使用方式

JAVA语言为我们提供了两种基础线程池的选择:ScheduledThreadPoolExecutor和ThreadPoolExecutor。它们都实现了ExecutorService接口(注意,ExecutorService接口本身和“线程池”并没有直接关系,它的定义更接近“执行器”,而“使用线程管理的方式进行实现”只是其中的一种实现方式)。这篇文章中,我们主要围绕ThreadPoolExecutor类进行讲解。

3-1、简单使用

首先我们来看看ThreadPoolExecutor类的最简单使用方式:

  1. package test.thread.pool;

  2.  

  3.  

    import java.util.concurrent.SynchronousQueue;

  4.  

    import java.util.concurrent.ThreadPoolExecutor;

  5.  

    import java.util.concurrent.TimeUnit;

  6.  

  7.  

    import org.apache.commons.logging.Log;

  8.  

    import org.apache.commons.logging.LogFactory;

  9.  

    import org.apache.log4j.BasicConfigurator;

  10.  

  11.  

    public class PoolThreadSimple {

  12.  

  13.  

    static {

  14.  

    BasicConfigurator.configure();

  15.  

    }

  16.  

  17.  

    public static void main(String[] args) throws Throwable {

  18.  

  19.  

    /*

  20.  

    * corePoolSize:核心大小,线程池初始化的时候,就会有这么大

  21.  

    * maximumPoolSize:线程池最大线程数

  22.  

    * keepAliveTime:如果当前线程池中线程数大于corePoolSize。

  23.  

    * 多余的线程,在等待keepAliveTime时间后如果还没有新的线程任务指派给它,它就会被回收

  24.  

    *

  25.  

    * unit:等待时间keepAliveTime的单位

  26.  

    *

  27.  

    * workQueue:等待队列。这个对象的设置是本文将重点介绍的内容

  28.  

    * */

  29.  

    ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(5, 10, 1, TimeUnit.MINUTES, new SynchronousQueue<Runnable>());

  30.  

    for(int index = 0 ; index < 10 ; index ++) {

  31.  

    poolExecutor.submit(new PoolThreadSimple.TestRunnable(index));

  32.  

    }

  33.  

  34.  

    // 没有特殊含义,只是为了保证main线程不会退出

  35.  

    synchronized (poolExecutor) {

  36.  

    poolExecutor.wait();

  37.  

    }

  38.  

    }

  39.  

  40.  

    /**

  41.  

    * 这个就是测试用的线程

  42.  

    * @author yinwenjie

  43.  

    */

  44.  

    private static class TestRunnable implements Runnable {

  45.  

  46.  

    /**

  47.  

    * 日志

  48.  

    */

  49.  

    private static Log LOGGER = LogFactory.getLog(TestRunnable.class);

  50.  

  51.  

    /**

  52.  

    * 记录任务的唯一编号,这样在日志中好做识别

  53.  

    */

  54.  

    private Integer index;

  55.  

  56.  

    public TestRunnable(int index) {

  57.  

    this.index = index;

  58.  

    }

  59.  

  60.  

    /**

  61.  

    * @return the index

  62.  

    */

  63.  

    public Integer getIndex() {

  64.  

    return index;

  65.  

    }

  66.  

  67.  

    @Override

  68.  

    public void run() {

  69.  

    /*

  70.  

    * 线程中,就只做一件事情:

  71.  

    * 等待60秒钟的事件,以便模拟业务操作过程

  72.  

    * */

  73.  

    Thread currentThread = Thread.currentThread();

  74.  

    TestRunnable.LOGGER.info("线程:" + currentThread.getId() + " 中的任务(" + this.getIndex() + ")开始执行===");

  75.  

    synchronized (currentThread) {

  76.  

    try {

  77.  

    currentThread.wait(60000);

  78.  

    } catch (InterruptedException e) {

  79.  

    TestRunnable.LOGGER.error(e.getMessage(), e);

  80.  

    }

  81.  

    }

  82.  

  83.  

    TestRunnable.LOGGER.info("线程:" + currentThread.getId() + " 中的任务(" + this.getIndex() + ")执行完成");

  84.  

    }

  85.  

  86.  

    }

  87.  

    }

随后的文章中我们将对线程池中的corePoolSize、maximumPoolSize、keepAliveTime、timeUnit、workQueue、threadFactory、handler参数和一些常用/不常用的设置项进行逐一讲解。

3-2、ThreadPoolExecutor逻辑结构和工作方式

在上面的代码中,我们创建线程池的时候使用了ThreadPoolExecutor中最简单的一个构造函数:

  1. public ThreadPoolExecutor(int corePoolSize,

  2.  

    int maximumPoolSize,

  3.  

    long keepAliveTime,

  4.  

    TimeUnit unit,

  5.  

    BlockingQueue<Runnable> workQueue)

  • 构造函数中需要传入的参数包括corePoolSize、maximumPoolSize、keepAliveTime、timeUnit和workQueue。要明确理解这些参数(和后续将要介绍的参数)的含义,就首先要搞清楚ThreadPoolExecutor线程池的逻辑结构。

一定要注意一个概念,即存在于线程池中容器的一定是Thread对象,而不是您要求运行的任务(所以叫线程池而不叫任务池也不叫对象池,更不叫游泳池);您要求运行的任务将被线程池分配给某一个空闲的Thread运行。

从上图中,我们可以看到构成线程池的几个重要元素:

  • 等待队列:顾名思义,就是您调用线程池对象的submit()方法或者execute()方法,要求线程池运行的任务(这些任务必须实现Runnable接口或者Callable接口)。但是出于某些原因线程池并没有马上运行这些任务,而是送入一个队列等待执行(这些原因后文马上讲解)。
  • 核心线程:线程池主要用于执行任务的是“核心线程”,“核心线程”的数量是您创建线程时所设置的corePoolSize参数决定的。如果不进行特别的设定,线程池中始终会保持corePoolSize数量的线程数(不包括创建阶段)。
  • 非核心线程:一旦任务数量过多(由等待队列的特性决定),线程池将创建“非核心线程”临时帮助运行任务。您设置的大于corePoolSize参数小于maximumPoolSize参数的部分,就是线程池可以临时创建的“非核心线程”的最大数量。这种情况下如果某个线程没有运行任何任务,在等待keepAliveTime时间后,这个线程将会被销毁,直到线程池的线程数量重新达到corePoolSize。
  • 要重点理解上一条描述中黑体字部分的内容。也就是说,并不是所谓的“非核心线程”才会被回收;而是谁的空闲时间达到keepAliveTime这个阀值,就会被回收。直到线程池中线程数量等于corePoolSize为止。
  • maximumPoolSize参数也是当前线程池允许创建的最大线程数量。那么如果您设置的corePoolSize参数和您设置的maximumPoolSize参数一致时,线程池在任何情况下都不会回收空闲线程。keepAliveTime和timeUnit也就失去了意义。
  • keepAliveTime参数和timeUnit参数也是配合使用的。keepAliveTime参数指明等待时间的量化值,timeUnit指明量化值单位。例如keepAliveTime=1,timeUnit为TimeUnit.MINUTES,代表空闲线程的回收阀值为1分钟。

说完了线程池的逻辑结构,下面我们讨论一下线程池是怎样处理某一个运行任务的。下图描述了一个完整的任务处理过程:

1、首先您可以通过线程池提供的submit()方法或者execute()方法,要求线程池执行某个任务。线程池收到这个要求执行的任务后,会有几种处理情况:

1.1、如果当前线程池中运行的线程数量还没有达到corePoolSize大小时,线程池会创建一个新的线程运行您的任务,无论之前已经创建的线程是否处于空闲状态。

1.2、如果当前线程池中运行的线程数量已经达到设置的corePoolSize大小,线程池会把您的这个任务加入到等待队列中。直到某一个的线程空闲了,线程池会根据您设置的等待队列规则,从队列中取出一个新的任务执行。

1.3、如果根据队列规则,这个任务无法加入等待队列。这时线程池就会创建一个“非核心线程”直接运行这个任务。注意,如果这种情况下任务执行成功,那么当前线程池中的线程数量一定大于corePoolSize。

1.4、如果这个任务,无法被“核心线程”直接执行,又无法加入等待队列,又无法创建“非核心线程”直接执行,且您没有为线程池设置RejectedExecutionHandler。这时线程池会抛出RejectedExecutionException异常,即线程池拒绝接受这个任务。(实际上抛出RejectedExecutionException异常的操作,是ThreadPoolExecutor线程池中一个默认的RejectedExecutionHandler实现:AbortPolicy,这在后文会提到)

2、一旦线程池中某个线程完成了任务的执行,它就会试图到任务等待队列中拿去下一个等待任务(所有的等待任务都实现了BlockingQueue接口,按照接口字面上的理解,这是一个可阻塞的队列接口),它会调用等待队列的poll()方法,并停留在哪里。

3、当线程池中的线程超过您设置的corePoolSize参数,说明当前线程池中有所谓的“非核心线程”。那么当某个线程处理完任务后,如果等待keepAliveTime时间后仍然没有新的任务分配给它,那么这个线程将会被回收。线程池回收线程时,对所谓的“核心线程”和“非核心线程”是一视同仁的,直到线程池中线程的数量等于您设置的corePoolSize参数时,回收过程才会停止。

3-3、不常用的设置

在ThreadPoolExecutor线程池中,有一些不常用的设置。我建议如果您在应用场景中没有特殊的要求,就不需要使用这些设置:

3-3-1、 allowCoreThreadTimeOut:

前文我们讨论到,线程池回收线程只会发生在当前线程池中线程数量大于corePoolSize参数的时候;当线程池中线程数量小于等于corePoolSize参数的时候,回收过程就会停止。

allowCoreThreadTimeOut设置项可以要求线程池:将包括“核心线程”在内的,没有任务分配的任何线程,在等待keepAliveTime时间后全部进行回收:

  1. ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(5, 10, 1, TimeUnit.MINUTES, new ArrayBlockingQueue<Runnable>(1));

  2.  

  3.  

    poolExecutor.allowCoreThreadTimeOut(true);

  • 1
  • 2
  • 3

以下是设置前的效果:

以下是设置后的效果:

3-3-2 prestartAllCoreThreads

前文我们还讨论到,当线程池中的线程还没有达到您设置的corePoolSize参数值的时候,如果有新的任务到来,线程池将创建新的线程运行这个任务,无论之前已经创建的线程是否处于空闲状态。这个描述可以用下面的示意图表示出来:

prestartAllCoreThreads设置项,可以在线程池创建,但还没有接收到任何任务的情况下,先行创建符合corePoolSize参数值的线程数:

原文地址:https://www.cnblogs.com/dim2046/p/12059073.html

时间: 2024-10-17 07:12:48

Java多线程之ThreadPoolExecutor详解使用的相关文章

iOS-多线程之NSThread详解

前言 线程是用来执行任务的,线程彻底执行完任务A才能去执行任务B.为了同时执行两个任务,产生了多线程. 我打开一个视频软件,我开辟一个线程A让它执行下载任务,我开辟一个线程B,用来播放视频.我开辟两个线程后,这两个任务能同时执行,如果我开辟一  个线程,只有下载任务完成,才能去执行播放任务. 线程相当于店里的服务员,一个服务员同时只能做一件事情,多顾几个服务员,就能同时做很多事情. 进程 1.进程是应用程序的执行实例,简单来说就是在操作系统中运行的程序.例如我在手机上只打开QQ和微信这两个软件,

java多线程之Future和FutureTask

Executor框架使用Runnable 作为其基本的任务表示形式.Runnable是一种有局限性的抽象,然后可以写入日志,或者共享的数据结构,但是他不能返回一个值. 许多任务实际上都是存在延迟计算的:执行数据库查询,从网络上获取资源,或者某个复杂耗时的计算.对于这种任务,Callable是一个更好的抽象,他能返回一个值,并可能抛出一个异常.Future表示一个任务的周期,并提供了相应的方法来判断是否已经完成或者取消,以及获取任务的结果和取消任务. public interface Callab

JAVA多线程之wait/notify

本文主要学习JAVA多线程中的 wait()方法 与 notify()/notifyAll()方法的用法. ①wait() 与 notify/notifyAll 方法必须在同步代码块中使用 ②wait() 与  notify/notifyAll() 的执行过程 ③中断 调用wait()方法进入等待队列的 线程 ④notify 通知的顺序不能错 ⑤多线程中测试某个条件的变化用 if 还是用 while? ①wait() 与 notify/notifyAll 方法必须在同步代码块中使用 wait()

ThreadPoolExecutor详解

ThreadPoolExecutor详解 ThreadPoolExecutor的完整构造方法的签名是:ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) . coreP

Java中的main()方法详解

在Java中,main()方法是Java应用程序的入口方法,也就是说,程序在运行的时候,第一个执行的方法就是main()方法,这个方法和其他的方法有很大的不同,比如方法的名字必须是main,方法必须是public static void 类型的,方法必须接收一个字符串数组的参数等等. 在看Java中的main()方法之前,先看一个最简单的Java应用程序HelloWorld,我将通过这个例子说明Java类中main()方法的奥秘,程序的代码如下: 1 /** 2 * Java中的main()方法

Java下static关键字用法详解

Java下static关键字用法详解 本文章介绍了java下static关键字的用法,大部分内容摘自原作者,在此学习并分享给大家. Static关键字可以修饰什么? 从以下测试可以看出, static 可以修饰: 1. 语句块 2. 成员变量(但是不能修饰局部变量) 3. 方法 4. 接口(内部接口) 5. 类(只能修饰在类中的类, 即静态内部类) 6. jdk 1.5 中新增的静态导入 那么static 修饰的表示什么呢? 当创建一个类时,就是在创建一个新类型,描述这个类的对象的外观和行为,除

java中的io系统详解

java中的io系统详解 分类: JAVA开发应用 笔记(读书.心得)2009-03-04 11:26 46118人阅读 评论(37) 收藏 举报 javaiostreamconstructorstringbyte 相关读书笔记.心得文章列表 Java 流在处理上分为字符流和字节流.字符流处理的单元为 2 个字节的 Unicode 字符,分别操作字符.字符数组或字符串,而字节流处理单元为 1 个字节,操作字节和字节数组. Java 内用 Unicode 编码存储字符,字符流处理类负责将外部的其他

Java多线程之wait(),notify(),notifyAll()

在多线程的情况下,因为同一进程的多个线程共享同一片存储空间,在带来方便的同一时候,也带来了訪问冲突这个严重的问题.Java语言提供了专门机制以解决这样的冲突,有效避免了同一个数据对象被多个线程同一时候訪问. wait与notify是java同步机制中重要的组成部分.结合与synchronizedkeyword使用,能够建立非常多优秀的同步模型. synchronized(this){ }等价于publicsynchronized void method(){.....} 同步分为类级别和对象级别

java多线程之ThreadLocal

ThreadLocal保证数据同步 package Thread.Common; import java.util.Random; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; class Accessor implements Runnable { private final int id; pub