UVA11424 GCD - Extreme (I)[数论]

其实这题我也没太明白。。。

我们要求
\[
\sum_{i=1}^{N-1}\sum_{j=i+1}^Ngcd(i,j)
\]
引理:

我们要求\(gcd(i,j)=k\)的个数,可转化为求\(gcd(i/k,j/k)=1\)的个数,即\(\varphi(N/k)\)。

那么如果要求所有满足\(gcd(i,j)=k\)的和,即求\(\varphi(N/k)*k\)。

为了满足10000组询问的复杂度,我们需要对这个式子做一些手脚。

设\(f(n)=gcd(1,n)+gcd(2,n)+\cdots+gcd(n-1,n)\)

则最终答案\(ans(n)=f(2)+f(3)+\cdots+f(n)\)。

难点在如何求\(f(n)\),前面提到,对于一个\(gcd(i,n)=k\),它对\(f(n)\)的贡献是\(\varphi(n/k)*k\)。

于是如果我们枚举\(k\),把所有\(f(n)\)算出来,复杂度就到了\(O(n^2)\),显然不可行。

然而实际上,对于一个\(gcd(i,n)=k\),有\(k\mid n\),那么
\[
f(n)=\sum_{k\mid n}k*\varphi(n/k)
\]

求完\(f(n)\)后,计算\(ans(n)\),实际上就相当于算了一个前缀和,询问的时候直接输出就得了。

参考代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 4000010
#define MOD 2520
#define E 1e-12
#define ll long long
using namespace std;
inline int read()
{
    int f=1,x=0;char c=getchar();
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
ll n,phi[N],p[N],cnt,v[N],sum[N],s[N];
inline void init(int n)
{
    phi[1]=1;
    for(int i=2;i<=n;++i){
        if(!v[i]){phi[i]=i-1;p[++cnt]=i;}
        for(int j=1;j<=cnt;++j){
            if(p[j]>n/i) break;
            v[i*p[j]]=1;
            if(i%p[j]==0){
                phi[i*p[j]]=phi[i]*p[j];break;
            }
            phi[i*p[j]]=phi[i]*(p[j]-1);
        }
    }
    for(int i=1;i<n;++i)
        for(int j=i+i;j<n;j+=i){
            sum[j]+=i*phi[j/i];
        }
    for(int i=1;i<=n;++i) sum[i]+=sum[i-1];
}
int main()
{
    init(N);
    while(~scanf("%d",&n)&&n!=0){
        cout<<sum[n]<<endl;
    }
    return 0;
}

原文地址:https://www.cnblogs.com/DarkValkyrie/p/11755263.html

时间: 2024-10-12 11:53:21

UVA11424 GCD - Extreme (I)[数论]的相关文章

UVA 11426 - GCD - Extreme (II) (数论)

UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N,求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gcd(1, n) + gcd(2, n) + ... + gcd(n - 1, n).这样的话,就可以得到递推式S(n) = f(2) + f(3) + ... + f(n) ==> S(n) = S(n - 1) + f(n);. 这样问题变成如何求f(n).设g(n, i),表示满足gcd(x, n)

UVA 11426 GCD - Extreme (II) (数论|欧拉函数)

题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先可以看出可以递推求出ans[n],因为ans[n-1]+f(n),其中f(n)表示小于n的数与n的gcd之和 问题转化为了求f(n),因为小于n的数与n的gcd一定是n的因数, 所以f(n)可以表示为sum(i)*i,其中sum(i)表示所有和n的gcd为i的数的数量,我们要求满足gcd(a, n) = i,的个数,可以转化为求gcd(a/i, n/i) = 1的个数, 于是可以发现sun(i) = phi(n/i),这

UVa11424 GCD - Extreme (I)

直接两重循环O(n^2)算gcd……未免太耗时 枚举因数a和a的倍数n,考虑gcd(i,n)==a的i数量(i<=n) 由于gcd(i,n)==a等价于gcd(i/a,n/a)==1,所以满足gcd(i,n)==a的数有phi[n/a]个 打出欧拉函数表,枚举因数,计算出每个n的f[n]=gcd(1,n)+gcd(2,n)+gcd(3,n)+...+gcd(n-1,n) 然后求f[n]的前缀和,回答询问. 1 /*by SilverN*/ 2 #include<iostream> 3 #

【UVa11426】GCD - Extreme (II)(莫比乌斯反演)

[UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 \[ans=\sum_{d=1}^nd\sum_{i=1}^{n/d}\mu(i)[\frac{n}{id}]^2\] 令\(T=id\) 然后把\(T\)提出来 \[ans=\sum_{T=1}^n[\frac{n}{T}]^2\sum_{d|T}d\mu(\frac{T}{d})\] 后面那一堆

spoj 3871. GCD Extreme 欧拉+积性函数

3871. GCD Extreme Problem code: GCDEX Given the value of N, you will have to find the value of G. The meaning of G is given in the following code G=0; for(k=i;k< N;k++) for(j=i+1;j<=N;j++) { G+=gcd(k,j); } /*Here gcd() is a function that finds the g

spoj 3871 gcd extreme

1 题目大意给出一个n,求sum(gcd(i,j),0<i<j<=n); 2 可以明显的看出来s[n]=s[n-1]+f[n]; 3 f[n]=sum(gcd(i,n),0<i<n); 4 现在麻烦的是求f[n] 5 gcd(x,n)的值都是n的约数,则f[n]= 6 sum{i*g(n,i),i是n的约数},注意到gcd(x,n)=i的 7 充要条件是gcd(x/i,n/i)=1,因此满足条件的 8 x/i有phi(n/i)个,说明gcd(n,i)=phi(n/i). 9

HDU4497 GCD and LCM 数论 素数分解

题意很简单首先以前做最简单的LCM跟CGD的时候都知道先求出两个数A,B的最大公约数GCD,那么LCM可以利用  A*B/GCD来求得,这点一开始脑残了没想到,结果没有进行特盘所以错了,意思就是 题目给的L%G不为0的话就是无解,结果我给判其它的去了,肯定漏了些什么没有发现 然后对于 L/G进行素因子分解,同时任意的数都能够通过素因子分解来表示,所以三个解x,y,z也能分解 L/G = p1^q1*p2^q2.... x = p1^i1*... y = p1^j1*... z = p1^k1*.

SP3871 GCDEX - GCD Extreme

SP3871 GCDEX - GCD Extreme 题目让我们求 \[\sum_{i=1}^n\sum_{j=i+1}^{n}gcd(i,j)\] \[\sum_{i=1}^n\sum_{j=1}^{i-1}gcd(i,j)\] 设\(g(n) = \sum_{i=1}^{n-1}gcd(i,n)\) \[\sum_{i=1}^ng(i)\] 考虑如何快速求\(g\) \[g(n)=\sum_{i=1}^{n-1}gcd(i,n)\] 设\(gcd(i,n)==d\) 换个方向枚举 \[g(n

hdu 4497 GCD and LCM 数论 素数分解

GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total Submission(s): 1339    Accepted Submission(s): 607 Problem Description Given two positive integers G and L, could you tell me how many solutions of