linux根文件系统的挂载过程详解

一:前言

前段时间在编译kernel的时候发现rootfs挂载不上。相同的root选项设置旧版的image却可以。为了彻底解决这个问题。研究了一下rootfs的挂载过程。特总结如下,希望能给这部份知识点比较迷茫的朋友一点帮助。

二:rootfs的种类

总的来说,rootfs分为两种:虚拟rootfs和真实rootfs.现在kernel的发展趋势是将更多的功能放到用户空间完成。以保持内核的精简。虚拟rootfs也是各linux发行厂商普遍采用的一种方式。可以将一部份的初始化工作放在虚拟的rootfs里完成。然后切换到真实的文件系统.

在虚拟rootfs的发展过程中。又有以下几个版本:

initramfs:

Initramfs是在 kernel 2.5中引入的技术,实际上它的含义就是:在内核镜像中附加一个cpio包,这个cpio包中包含了一个小型的文件系统,当内核启动时,内核将这个cpio包解开,并且将其中包含的文件系统释放到rootfs中,内核中的一部分初始化代码会放到这个文件系统中,作为用户层进程来执行。这样带来的明显的好处是精简了内核的初始化代码,而且使得内核的初始化过程更容易定制。这种这种方式的rootfs是包含在kernel image之中的.

cpio-initrd: cpio格式的rootfs

image-initrd:传统格式的rootfs

关于这两种虚拟文件系统的制作请自行参阅其它资料

三:rootfs文件系统的挂载过程

这里说的rootfs不同于上面分析的rootfs。这里指的是系统初始化时的根结点。即/结点。它是其于内存的rootfs文件系统。这部份之前在>和文件系统中已经分析过。为了知识的连贯性这里再重复一次。

Start_kernel()àmnt_init():

void __init mnt_init(void)

{

……

……

init_rootfs();

init_mount_tree();

}

Init_rootfs的代码如下:

int __init init_rootfs(void)

{

int err;

err = bdi_init(&ramfs_backing_dev_info);

if (err)

return err;

err = register_filesystem(&rootfs_fs_type);

if (err)

bdi_destroy(&ramfs_backing_dev_info);

return err;

}

这个函数很简单。就是注册了rootfs的文件系统.

init_mount_tree()代码如下:

static void __init init_mount_tree(void)

{

struct vfsmount *mnt;

struct mnt_namespace *ns;

struct path root;

mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);

if (IS_ERR(mnt))

panic("Can‘t create rootfs");

ns = kmalloc(sizeof(*ns), GFP_KERNEL);

if (!ns)

panic("Can‘t allocate initial namespace");

atomic_set(&ns->count, 1);

INIT_LIST_HEAD(&ns->list);

init_waitqueue_head(&ns->poll);

ns->event = 0;

list_add(&mnt->mnt_list, &ns->list);

ns->root = mnt;

mnt->mnt_ns = ns;

init_task.nsproxy->mnt_ns = ns;

get_mnt_ns(ns);

root.mnt = ns->root;

root.dentry = ns->root->mnt_root;

set_fs_pwd(current->fs, &root);

set_fs_root(current->fs, &root);

}

在这里,将rootfs文件系统挂载。它的挂载点默认为”/”.最后切换进程的根目录和当前目录为”/”.这也就是根目录的由来。不过这里只是初始化。等挂载完具体的文件系统之后,一般都会将根目录切换到具体的文件系统。所以在系统启动之后,用mount命令是看不到rootfs的挂载信息的.

四:虚拟文件系统的挂载

根目录已经挂上去了,可以挂载具体的文件系统了.

在start_kernel()àrest_init()àkernel_init():

static int __init kernel_init(void * unused)

{

……

……

do_basic_setup();

if (!ramdisk_execute_command)

ramdisk_execute_command = "/init";

if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {

ramdisk_execute_command = NULL;

prepare_namespace();

}

/*

* Ok, we have completed the initial bootup, and

* we‘re essentially up and running. Get rid of the

* initmem segments and start the user-mode stuff..

*/

init_post();

return 0;

}

do_basic_setup()是一个很关键的函数,所有直接编译在kernel中的模块都是由它启动的。代码片段如下:

static void __init do_basic_setup(void)

{

/* drivers will send hotplug events */

init_workqueues();

usermodehelper_init();

driver_init();

init_irq_proc();

do_initcalls();

}

Do_initcalls()用来启动所有在__initcall_start和__initcall_end段的函数,而静态编译进内核的modules也会将其入口放置在这段区间里。

跟根文件系统相关的初始化函数都会由rootfs_initcall()所引用。注意到有以下初始化函数:

rootfs_initcall(populate_rootfs);

也就是说会在系统初始化的时候会调用populate_rootfs进行初始化。代码如下:

static int __init populate_rootfs(void)

{

char *err = unpack_to_rootfs(__initramfs_start,

__initramfs_end - __initramfs_start, 0);

if (err)

panic(err);

if (initrd_start) {

#ifdef CONFIG_BLK_DEV_RAM

int fd;

printk(KERN_INFO "checking if image is initramfs...");

err = unpack_to_rootfs((char *)initrd_start,

initrd_end - initrd_start, 1);

if (!err) {

printk(" it is\n");

unpack_to_rootfs((char *)initrd_start,

initrd_end - initrd_start, 0);

free_initrd();

return 0;

}

printk("it isn‘t (%s); looks like an initrd\n", err);

fd = sys_open("/initrd.image", O_WRONLY|O_CREAT, 0700);

if (fd >= 0) {

sys_write(fd, (char *)initrd_start,

initrd_end - initrd_start);

sys_close(fd);

free_initrd();

}

#else

printk(KERN_INFO "Unpacking initramfs...");

err = unpack_to_rootfs((char *)initrd_start,

initrd_end - initrd_start, 0);

if (err)

panic(err);

printk(" done\n");

free_initrd();

#endif

}

return 0;

}

unpack_to_rootfs:顾名思义就是解压包,并将其释放至rootfs。它实际上有两个功能,一个是释放包,一个是查看包,看其是否属于cpio结构的包。功能选择是根据最后的一个参数来区分的.

在这个函数里,对应我们之前分析的三种虚拟根文件系统的情况。一种是跟kernel融为一体的initramfs.在编译kernel的时候,通过链接脚本将其存放在__initramfs_start至__initramfs_end的区域。这种情况下,直接调用unpack_to_rootfs将其释放到根目录.如果不是属于这种形式的。也就是__initramfs_start和__initramfs_end的值相等,长度为零。不会做任何处理。退出.

对应后两种情况。从代码中看到,必须要配制CONFIG_BLK_DEV_RAM才会支持image-initrd。否则全当成cpio-initrd的形式处理。

对于是cpio-initrd的情况。直接将其释放到根目录。对于是image-initrd的情况。将其释放到/initrd.image.最后将initrd内存区域归入伙伴系统。这段内存就可以由操作系统来做其它的用途了。

接下来,内核对这几种情况又是怎么处理的呢?不要着急。往下看:

回到kernel_init()这个函数:

static int __init kernel_init(void * unused)

{

…….

…….

do_basic_setup();

/*

* check if there is an early userspace init.  If yes, let it do all

* the work

*/

if (!ramdisk_execute_command)

ramdisk_execute_command = "/init";

if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {

ramdisk_execute_command = NULL;

prepare_namespace();

}

/*

* Ok, we have completed the initial bootup, and

* we‘re essentially up and running. Get rid of the

* initmem segments and start the user-mode stuff..

*/

init_post();

return 0;

}

ramdisk_execute_command:在kernel解析引导参数的时候使用。如果用户指定了init文件路径,即使用了“init=”,就会将这个参数值存放到这里。

如果没有指定init文件路径。默认为/init

对应于前面一段的分析,我们知道,对于initramdisk和cpio-initrd的情况,都会将虚拟根文件系统释放到根目录。如果这些虚拟文件系统里有/init这个文件。就会转入到init_post()。

Init_post()代码如下:

static int noinline init_post(void)

{

free_initmem();

unlock_kernel();

mark_rodata_ro();

system_state = SYSTEM_RUNNING;

numa_default_policy();

if (sys_open((const char __user *) "/dev/console", O_RDWR, 0)

(void) sys_dup(0);

(void) sys_dup(0);

if (ramdisk_execute_command) {

run_init_process(ramdisk_execute_command);

printk(KERN_WARNING "Failed to execute %s\n",

ramdisk_execute_command);

}

/*

* We try each of these until one succeeds.

*

* The Bourne shell can be used instead of init if we are

* trying to recover a really broken machine.

*/

if (execute_command) {

run_init_process(execute_command);

printk(KERN_WARNING "Failed to execute %s.  Attempting "

"defaults...\n", execute_command);

}

run_init_process("/sbin/init");

run_init_process("/etc/init");

run_init_process("/bin/init");

run_init_process("/bin/sh");

panic("No init found.  Try passing init= option to kernel.");

}

从代码中可以看中,会依次执行指定的init文件,如果失败,就会执行/sbin/init, /etc/init,, /bin/init,/bin/sh

注意的是,run_init_process在调用相应程序运行的时候,用的是kernel_execve。也就是说调用进程会替换当前进程。只要上述任意一个文件调用成功,就不会返回到这个函数。如果上面几个文件都无法执行。打印出没有找到init文件的错误。

对于image-hdr或者是虚拟文件系统中没有包含 /init的情况,会由prepare_namespace()处理。代码如下:

void __init prepare_namespace(void)

{

int is_floppy;

if (root_delay) {

printk(KERN_INFO "Waiting %dsec before mounting root device...\n",

root_delay);

ssleep(root_delay);

}

/* wait for the known devices to complete their probing */

while (driver_probe_done() != 0)

msleep(100);

//mtd的处理

md_run_setup();

if (saved_root_name[0]) {

root_device_name = saved_root_name;

if (!strncmp(root_device_name, "mtd", 3)) {

mount_block_root(root_device_name, root_mountflags);

goto out;

}

ROOT_DEV = name_to_dev_t(root_device_name);

if (strncmp(root_device_name, "/dev/", 5) == 0)

root_device_name += 5;

}

if (initrd_load())

goto out;

/* wait for any asynchronous scanning to complete */

if ((ROOT_DEV == 0) && root_wait) {

printk(KERN_INFO "Waiting for root device %s...\n",

saved_root_name);

while (driver_probe_done() != 0 ||

(ROOT_DEV = name_to_dev_t(saved_root_name)) == 0)

msleep(100);

}

is_floppy = MAJOR(ROOT_DEV) == FLOPPY_MAJOR;

if (is_floppy && rd_doload && rd_load_disk(0))

ROOT_DEV = Root_RAM0;

mount_root();

out:

sys_mount(".", "/", NULL, MS_MOVE, NULL);

sys_chroot(".");

}

这里有几个比较有意思的处理,首先用户可以用root=来指定根文件系统。它的值保存在saved_root_name中。如果用户指定了以mtd开始的字串做为它的根文件系统。就会直接去挂载。这个文件是mtdblock的设备文件。

否则将设备结点文件转换为ROOT_DEV即设备节点号

然后,转向initrd_load()执行initrd预处理后,再将具体的根文件系统挂载。

注意到,在这个函数末尾。会调用sys_mount()来移动当前文件系统挂载点到”/”目录下。然后将根目录切换到当前目录。这样,根文件系统的挂载点就成为了我们在用户空间所看到的”/”了.

对于其它根文件系统的情况,会先经过initrd的处理。即

int __init initrd_load(void)

{

if (mount_initrd) {

create_dev("/dev/ram", Root_RAM0);

/*

* Load the initrd data into /dev/ram0. Execute it as initrd

* unless /dev/ram0 is supposed to be our actual root device,

* in that case the ram disk is just set up here, and gets

* mounted in the normal path.

*/

if (rd_load_image("/initrd.image") && ROOT_DEV != Root_RAM0) {

sys_unlink("/initrd.image");

handle_initrd();

return 1;

}

}

sys_unlink("/initrd.image");

return 0;

}

建立一个ROOT_RAM)的设备节点,并将/initrd/.image释放到这个节点中,/initrd.image的内容,就是我们之前分析的image-initrd。

如果根文件设备号不是ROOT_RAM0( 用户指定的根文件系统不是/dev/ram0就会转入到handle_initrd()

如果当前根文件系统是/dev/ram0.将其直接挂载就好了。

handle_initrd()代码如下:

static void __init handle_initrd(void)

{

int error;

int pid;

real_root_dev = new_encode_dev(ROOT_DEV);

create_dev("/dev/root.old", Root_RAM0);

/* mount initrd on rootfs‘ /root */

mount_block_root("/dev/root.old", root_mountflags & ~MS_RDONLY);

sys_mkdir("/old", 0700);

root_fd = sys_open("/", 0, 0);

old_fd = sys_open("/old", 0, 0);

/* move initrd over / and chdir/chroot in initrd root */

sys_chdir("/root");

sys_mount(".", "/", NULL, MS_MOVE, NULL);

sys_chroot(".");

/*

* In case that a resume from disk is carried out by linuxrc or one of

* its children, we need to tell the freezer not to wait for us.

*/

current->flags |= PF_FREEZER_SKIP;

pid = kernel_thread(do_linuxrc, "/linuxrc", SIGCHLD);

if (pid > 0)

while (pid != sys_wait4(-1, NULL, 0, NULL))

yield();

current->flags &= ~PF_FREEZER_SKIP;

/* move initrd to rootfs‘ /old */

sys_fchdir(old_fd);

sys_mount("/", ".", NULL, MS_MOVE, NULL);

/* switch root and cwd back to / of rootfs */

sys_fchdir(root_fd);

sys_chroot(".");

sys_close(old_fd);

sys_close(root_fd);

if (new_decode_dev(real_root_dev) == Root_RAM0) {

sys_chdir("/old");

return;

}

ROOT_DEV = new_decode_dev(real_root_dev);

mount_root();

printk(KERN_NOTICE "Trying to move old root to /initrd ... ");

error = sys_mount("/old", "/root/initrd", NULL, MS_MOVE, NULL);

if (!error)

printk("okay\n");

else {

int fd = sys_open("/dev/root.old", O_RDWR, 0);

if (error == -ENOENT)

printk("/initrd does not exist. Ignored.\n");

else

printk("failed\n");

printk(KERN_NOTICE "Unmounting old root\n");

sys_umount("/old", MNT_DETACH);

printk(KERN_NOTICE "Trying to free ramdisk memory ... ");

if (fd

error = fd;

} else {

error = sys_ioctl(fd, BLKFLSBUF, 0);

sys_close(fd);

}

printk(!error ? "okay\n" : "failed\n");

}

}

先将/dev/ram0挂载,而后执行/linuxrc.等其执行完后。切换根目录,再挂载具体的根文件系统.

到这里。文件系统挂载的全部内容就分析完了.

五:小结

在本小节里。分析了根文件系统的挂载流程。并对几个虚拟根文件系统的情况做了详细的分析。理解这部份,对我们构建linux嵌入式开发系统是很有帮助的.

原文地址:https://www.cnblogs.com/schips/p/11677606.html

时间: 2024-10-09 21:08:37

linux根文件系统的挂载过程详解的相关文章

Linux LVM逻辑卷配置过程详解

Linux LVM逻辑卷配置过程详解 许多Linux使用者安装操作系统时都会遇到这样的困境:如何精确评估和分配各个硬盘分区的容量,如果当初评估不准确,一旦系统分区不够用时可能不得不备份.删除相关数据,甚至被迫重新规划分区并重装操作系统,以满足应用系统的需要. LVM是Linux环境中对磁盘分区进行管理的一种机制,是建立在硬盘和分区之上.文件系统之下的一个逻辑层,可提高磁盘分区管理的灵活性.RHEL5默认安装的分区格式就是LVM逻辑卷的格式,需要注意的是/boot分区不能基于LVM创建,必须独立出

Linux(RHEL6)启动过程详解

Linux(红帽RHEL6)启动过程详解: RHEL的一个重要和强大的方面是它是开源的,并且系统的启动过程是用户可配置的.用户可以自由的配置启动过程的许多方面,包括可以指定启动时运行的程序.同样的,系统关机时所要终止的进程也是可以进行组织和配置的,即使这个过程的自定义很少被需要. 理解系统的启动和关机过程是如何实现的不仅可以允许自定义,而且也可以更容易的处理与系统的启动或者关机相关的故障.  1.启动过程  以下是启动过程的几个基本阶段:   ① 系统加载并允许boot loader.此过程的细

使用 /proc 文件系统来访问 linux操作系统 内核的内容 && 虚拟文件系统vfs及proc详解

http://blog.163.com/he_junwei/blog/static/19793764620152743325659/ http://www.01yun.com/other/20130422/366044.html 使用 /proc 文件系统来访问 Linux 内核的内容 这个虚拟文件系统在内核空间和用户空间之间打开了一个通信窗口 简介: /proc 文件系统是一个虚拟文件系统,通过它可以使用一种新的方法在 Linux? 内核空间和用户空间之间进行通信.在 /proc 文件系统中,

linux开启过程详解

解操作系统开机引导和启动过程对于配置操作系统和解决相关启动问题是至关重要的.该文章陈述了 GRUB2 引导装载程序开机引导装载内核的过程和 systemd 初始化系统执行开机启动操作系统的过程. ??事实上,操作系统的启动分为两个阶段:引导boot和启动startup.引导阶段开始于打开电源开关,结束于内核初始化完成和 systemd 进程成功运行.启动阶段接管了剩余工作,直到操作系统进入可操作状态. ??总体来说,Linux 的开机引导和启动过程是相当容易理解,下文将分节对于不同步骤进行详细说

Linux根文件系统的详解

                            Linux根文件系统的详解    多数的Linux版本使用的是FHS文件组织结构,FHS是Filesystem Hierarchy Standard(文件系统目录标准)的缩写,其采用树形结构组织文件.实际上FHS仅是规范在根目录(/)下面各个主要目录应该放什么样的文件.然后下面我们就进行对Linux的rootfs进行简单的分析说明.         首先对rootfs进行一下说明,rootfs是Root File System的缩写,表:L

Linux系统根文件以及命名规则详解

一.Linux系统根文件详解 Linux的重要哲学思想其实就是:将程序的配置文件保存为纯文本格式. 1./boot:系统启动文件,如:内核文件,iniyrd以及gurb(bootloarder) 2./dev:目录下为设备文件,设备文件又分为块设备和字符设备: 块设备:按数据块随机访问,没有顺序. 字符设备:线性访问,按字符为单位进行. 注:其中背景为黑色,字体为***的文件,为特殊文件,"1,   0"分别为文件的主设备号和次设备号 [[email protected] ~]# ls

linux 挂载命令详解

挂载文件系统与卸载文件系统 mount / umount NO1. 挂载光驱 [[email protected] root]# mount -t iso9660 /dev/cdrom /mnt/cdrom NO2. 挂载光驱,支持中文 [[email protected] root]# mount -t iso9660 -o codepage=936,iocharset=cp936 /dev/cdrom /mnt/cdrom NO3. 挂载 Windows 分区,FAT文件系统 [[email

Linux系统启动过程详解

 Linux系统启动过程详解 启动第一步--加载BIOS当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至于计算机必须在最开始就找到它.这是因为BIOS中包含了CPU的相关信息.设备启动顺序信息.硬盘信息.内存信息.时钟信息.PnP特性等等.在此之后,计算机心里就有谱了,知道应该去读取哪个硬件设备了. 启动第二步--读取MBR众所周知,硬盘上第0磁道第一个扇区被称为MBR,也就是Master Boot Record,即主引导记录,它的大小是512字节,别看地方不大,

Linux网络编程——进程池实现过程详解(1)

目录 进程池 父进程的实现流程 子进程的实现流程 进程池 父进程的实现流程 1.定义数据结构pChild,申请子进程数目的结构体空间 2.通过循环,socketpair创建全双工管道,创建子进程,将子进程pid,管道对端,是否忙碌等信息存储 3.socket,bind,listen,对应的端口处于监听状态 netstat 4.epoll_create创建epfd,监控socketFd和所有子进程的管道对端 5.while(1)循环 epoll_wait等待客户端的请求及子进程是否有通知 如果so