[CSP-S模拟测试]:chess(数学)

题目描述

  $dirty$在一个棋盘上放起了棋子。
  棋盘规格为$n\times m$,他希望任意一个$n\times n$的区域内都有$C$个棋子。$dirty$很快就放置好了一个满足条件的棋盘方案,但是他认为这样过于简单了,他希望知道有多少个满足条件的方案。


输入格式

输入三个整数$n,m,C$,含义如题所述。


输出格式

输出一行一个整数,表示答案对$10^9+7$取模的结果。


样例

样例输入:

2 3 1

样例输出:

6


数据范围与提示

对于$20\%$的数据,$n,K\leqslant 4$;
对于另外$20\%$的数据,$m=n$;
对于另外$20\%$的数据,$n\leqslant 50$;
对于$100\%$的数据,$1\leqslant n\leqslant 100$;$1\leqslant m\leqslant 10^{18}$;$1\leqslant C\leqslant n^2$


题解

又没有打正解……

设$dp[i][j]$表示第$i$列放了$j$个的方案数。

$m$很大,显然不能爆扫,所以还要乘上系数,那么式子就变成了:

$$dp[i][j]=\sum \limits_{k=0}^j (C_n^{j-k})^{\frac{m}{n}}\times dp[i-1][k]$$

初值$dp[0][0]=1$。

预处理系数最有时间复杂度为:$\Theta(n\times c^2)$的。

又因为选$c$个和选$n^2-c$个的方案数是一样的,所以我们可以用这种方式优化。

但是$n=m$的点还是需要特判。

时间复杂度:$\Theta(n\times c^2)$。

期望得分:$60$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
const int mod=1000000007;
int n,c;
long long m;
long long C[1001][1001];
long long dp[1001][10001],wzc[1001][10001];
long long jc[10001],inv[10001];
long long qpow(long long x,long long y)
{
	long long res=1;
	while(y)
	{
		if(y&1)res=res*x%mod;
		x=x*x%mod;
		y>>=1;
	}
	return res;
}
void pre_work()
{
	C[0][0]=1;
	for(int i=1;i<=n;i++)
	{
		C[i][0]=1;
		for(int j=1;j<=i;j++)
			C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
	}
	jc[0]=1;
	for(long long i=1;i<=n*n;i++)
		jc[i]=(jc[i-1]*i)%mod;
	inv[n*n]=qpow(jc[n*n],mod-2);
	for(long long i=n*n;i;i--)
		inv[i-1]=inv[i]*i%mod;
}
long long get_C(long long x,long long y){return ((jc[x]*inv[y])%mod*inv[x-y])%mod;}
long long lucas(long long x,long long y)
{
	if(!y)return 1;
	return (get_C(x%mod,y%mod)*lucas(x/mod,y/mod))%mod;
}
int main()
{
	scanf("%d%lld%d",&n,&m,&c);
	pre_work();
	if(n==m)
	{
		printf("%lld",lucas(n*n,c));
		return 0;
	}
	if(n*n<c*2)c=n*n-c;
	for(int i=1;i<=n;i++)
	{
		long long flag=m/n;
		if(i<=m%n)flag++;
		flag%=(mod-1);
		for(int j=0;j<=c;j++)
			dp[i][j]=qpow(C[n][j],flag);
	}
	wzc[0][0]=1;
	for(int i=1;i<=n;i++)
		for(int j=0;j<=c;j++)
			for(int k=0;k<=j;k++)
				wzc[i][j]=(wzc[i][j]+wzc[i-1][k]*dp[i][j-k]%mod)%mod;
	printf("%lld",wzc[n][c]);
	return 0;
}


rp++

原文地址:https://www.cnblogs.com/wzc521/p/11660692.html

时间: 2024-10-08 02:47:48

[CSP-S模拟测试]:chess(数学)的相关文章

模拟测试(vj)

做这份模拟测试,已经崩溃了,英文看不懂,题意理解错.到结束了只a了第一题,人生陷入了低谷,于是花了一天的时间终于把不会的弄明白了,在这里写一份总结~ T1,简单的模拟,如果打枪打中一支鸟,将这个位置设为0,并向两边扩散,注意这个位置一定要有鸟. 代码~ #include<bits/stdc++.h> using namespace std; int a[30000]; int n,m; int main() { cin>>n; for(int i=1;i<=n;i++) ci

Android单元测试与模拟测试详解

测试与基本规范 为什么需要测试? 为了稳定性,能够明确的了解是否正确的完成开发. 更加易于维护,能够在修改代码后保证功能不被破坏. 集成一些工具,规范开发规范,使得代码更加稳定( 如通过 phabricator differential 发diff时提交需要执行的单元测试,在开发流程上就可以保证远端代码的稳定性). 2. 测什么? 一般单元测试: 列出想要测试覆盖的异常情况,进行验证. 性能测试. 模拟测试: 根据需求,测试用户真正在使用过程中,界面的反馈与显示以及一些依赖系统架构的组件的应用测

微信在线信息模拟测试工具(基于Senparc.Weixin.MP)

目前为止似乎还没有看到过Web版的普通消息测试工具(除了官方针对高级接口的),现有的一些桌面版的几个测试工具也都是使用XML直接请求,非常不友好,我们来尝试做一个“面向对象”操作的测试工具. 测试工具在线DEMO:http://weixin.senparc.com/SimulateTool Senparc.Weixin.MP是一个开源的微信SDK项目,地址:https://github.com/JeffreySu/WeiXinMPSDK (其中https://github.com/Jeffrey

css Hack,用IE11模拟测试的,条件注释要找真IE去测,模拟的无效

<!DOCTYPE html> <!--[if lt IE 7 ]> <html class="ie6 ie"> <![endif]--> <!--[if IE 7 ]> <html class="ie7 ie"> <![endif]--> <!--[if IE 8 ]> <html class="ie8 ie"> <![endif]

2016年上半年软考真题在线模拟测试,提前知晓你的成绩

2016年上半年软考于5月21日结束了,考试完想知道结果的急切心理,几乎每个经历过上学时代的人都能深刻体验到.如果你想知道你考的怎么样,如果你想要提前知道你的成绩,如果你想知道你哪个地方出错了,如果你想知道你哪个地方知识掌握的不够想要更深入的去理解,那就来希赛软考学院吧!希赛软考学院提供2016年上半年软考真题在线模拟测试,有标准的参考答案,有专业老师的解析视频,让你提前知晓你的成绩,让你再次巩固学习. 希赛授课专家介绍 张友生,计算机应用技术博士,软考培训教程系列丛书主编,考试指定教材<系统分

Mock 模拟测试简介及 Mockito 使用入门

Mock 是什么 mock 测试就是在测试过程中,对于某些不容易构造或者不容易获取的对象,用一个虚拟的对象来创建以便测试的测试方法.这个虚拟的对象就是mock对象.mock对象就是真实对象在调试期间的代替品. 简单的看一张图 我们在测试类 A 时,类 A 需要调用类 B 和类 C,而类 B 和类 C 又需要调用其他类如 D.E.F 等,假如类 D.E.F 构造很耗时又或者调用很耗时的话是非常不便于测试的(比如是 DAO 类,每次访问数据库都很耗时).所以我们引入 Mock 对象. 如上图,我们将

【模拟】【数学】CSU 1803 2016 (2016湖南省第十二届大学生计算机程序设计竞赛)

题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1803 题目大意: 给定n,m(n,m<=109)1<=i<=n,1<=j<=m,求i*j%2016=0的方案数. 题目思路: [模拟][数学] 按照%2016的余数分类.每增加一个2016就又多一种方案.统计是2016的几倍,根据余数分类.最后枚举i,j的余数即可求解. 1 // 2 //by coolxxx 3 //#include<bits/stdc++

asp.net中模拟测试smtp发邮件

最近在编程人生里要测试一个会员邮件的功能,就写了下面的代码. 在asp.net 中,有时要测试发信SMTP,但如果在单元测试中,如果没方便好用的 smtp怎么办,其实还是有办法模拟的,下面讲解下: 在web.config 中设置 <system.net>   <mailSettings>      <smtp deliveryMethod="SpecifiedPickupDirectory">          <specifiedPickup

2018冬令营模拟测试赛(三)

2018冬令营模拟测试赛(三) [Problem A]摧毁图状树 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见"试题描述" 数据规模及约定 见"试题描述" 题解 这题没想到贪心 QwQ,那就没戏了-- 贪心就是每次选择一个最深的且没有被覆盖的点向上覆盖 \(k\) 层,因为这个"最深的没有被覆盖的点"不可能再有其它点引出的链覆盖它了,而它又