灰度图像--频域滤波 傅里叶变换之离散时间傅里叶变换(DTFT)

学习DIP第22天

转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意。。。。。。。。

开篇废话

本来是不想写DTFT的,原因1,与前面傅里叶变换(FT)推导过程相似,原因2,在图像处理中DTFT应用不是很广泛,但后来想想还是写出来,原因1,不写出来我觉得心里不踏实,原因2,DTFT是DFT的近亲,不写的话家族不完整,下一篇写DFT,其实写到这个阶段,要写的东西就少了许多,因为很多都是引用前面的结论和一些性质。但还是写出来吧,为了心里踏实。

忘了哪位中国上一辈的科学家说过,“搞科研不能糊弄,你糊弄它,它就糊弄你。”我这算不上科研,但感觉还是学踏实点心里有底,不至于以后哪里出了问题总是会怀疑自己知识基础有问题。还有,希望我们当代的科研工作者能好好搞研究,都不好好教学了还搞不好研究,那就真是一群废物了。

从离散周期信号的傅里叶级数推导离散时间傅里叶变换

一个某一个有限序列x[n],其在某一个阶段N(N1<=n<=N2)内不为0,其外部,全部为0,用这个信号构造一个周期信号x‘[n],x[n]是x‘[n]的一个周期。

x‘[n]是周期信号,所以其有傅里叶级数,并且其傅里叶级数是周期的:

在N内x‘[n]=x[n],替换求和内容为:

在N外x[n]=0;所以定义函数:

所以系数ak正比于X(e^jw):

其中w0=2*pi/N,上面式子和第一个式子结合起来就有:

因为w0*N=2*pi,所以有:

随着N的增加,w0不断减少,当N趋近于无穷大的时候,w0趋近于无穷小,x‘[n]=x[n] ,此时,上式变成一个积分式,积分变量为w0,因为w0=2*pi/N,所以积分区间为2*pi,就有:

因为X(e^jw)e^jw的周期是2*pi,所以积分区间可以去任何长度的2*pi区间,得出以下变换对:

这就是离散时间傅里叶变换对,同样,转换到频域的叫分析公式,转换到时域的叫综合公式。

性质

总结

至此,傅里叶家的四种主要变换已经全部推导了以下,下一篇写下DFT是什么,然后介绍几个常见问题,并给出傅里叶家谱和之间的相互关系。

时间: 2024-10-31 13:54:35

灰度图像--频域滤波 傅里叶变换之离散时间傅里叶变换(DTFT)的相关文章

灰度图像--频域滤波 傅里叶变换之离散傅里叶变换(DFT)

学习DIP第23天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 开篇废话 一如既往的开篇废话,今天介绍离散傅里叶变换(DFT),学习到这,不敢说对傅里叶有多了解,

灰度图像--频域滤波 傅里叶变换之傅里叶级数

学习DIP第18天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意........ 0.开篇废话 废话开始,故事是这样的,当我上大学的时候,学过信号与系统,当时已经学了高的数学,也知道了傅里叶变换的公式,但是,公式是怎么来的,有什么用,不清楚,学信号与系统的时候,知道傅里叶用在什么地方,但是不清楚为什么可以用在这些地方,书中的记忆是:傅里叶变换或者其家族的变换

灰度图像--频域滤波 同态滤波

学习DIP第27天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro

灰度图像--频域滤波 概论

学习DIP第25天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 开篇废话 这两天写了一下频域滤波的代码,并且发现以前博客里代码的一个BUG,产生BUG的原因是一维

灰度图像--频域滤波 傅里叶变换之二维离散傅里叶变换

学习DIP第24天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 开篇废话 今天要记录的是二维离散傅里叶变换的一些性质,也是傅里叶在图像处理中要用到的一些性质,所以

灰度图像--频域滤波 傅里叶变换之卷积

学习DIP第17天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意........ 开篇废话 依旧是废话,傅里叶变换大学学了等于白学,首先问题在自己,自己当时就没把心思投入到学习中,第二,老师讲的真的是,现在回想,看看斯坦福的公开课"傅里叶变换及其应用"感觉差距不是一般的大.不是对老师的不尊,也不是崇洋媚外,事实摆在那里,一看就知道.把复杂的讲简单了

灰度图像--频域滤波 滤波器

学习DIP第26天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 开篇废话 依然是废话开始,滤波器的起源就是频域来的,针对频域特性,滤波器被设计成各种各样的功能,但

Python下opencv使用笔记(十)(图像频域滤波与傅里叶变换)

前面曾经介绍过空间域滤波,空间域滤波就是用各种模板直接与图像进行卷积运算,实现对图像的处理,这种方法直接对图像空间操作,操作简单,所以也是空间域滤波. 频域滤波说到底最终可能是和空间域滤波实现相同的功能,比如实现图像的轮廓提取,在空间域滤波中我们使用一个拉普拉斯模板就可以提取,而在频域内,我们使用一个高通滤波模板(因为轮廓在频域内属于高频信号),可以实现轮廓的提取,后面也会把拉普拉斯模板频域化,会发现拉普拉斯其实在频域来讲就是一个高通滤波器. 既然是频域滤波就涉及到把图像首先变到频域内,那么把图

傅里叶变换和频域滤波

傅里叶变换 #include "opencv2/opencv.hpp" using namespace cv; #define PI2 2*3.141592654 int main() { Mat image = imread("lena.png"); resize(image, image, Size(100,100)); cvtColor(image,image,CV_RGB2GRAY); imshow("src",image); image