算法时间复杂度计算

概述

??一个算法是由控制结构(顺序,分支,循环)和原操作(指固有数据类型的操作)构成。为了便于比较同一问题的不同算法,通常的做法是,从算法中选取一种对所研究的问题来说是基本操作的原操作,以该基本原操作重复执行的次数作为算法的时间度量。多数情况下,基本原操作是它最深层循环中的原操作,对算法的时间度量最常用的是考虑在最坏的情况下时间复杂度。

时间复杂度的定义

??算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。

根据定义,可以归纳出基本的计算步骤

1. 计算出基本操作的执行次数T(n)

??基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。

2. 计算出T(n)的数量级

??求T(n)的数量级,只要将T(n)进行如下一些操作:忽略常量、低次幂和最高次幂的系数。令f(n)=T(n)的数量级。

3. 用大O来表示时间复杂度

??当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。

以上步骤可以简化

1. 找到执行次数最多的语句

2. 计算语句执行次数的数量级

3. 用大O来表示结果

举例

例一(O(n))

public void printsum(int count){
    int sum = 1;
    for(int i= 0; i<n; i++){
       sum += i;
    }
    System.out.print(sum);
}

记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除了循环之外,其余的可运行语句的复杂度都是O(1)。

所以printsum的时间复杂度 = for的O(n)+O(1) = 忽略常量 = O(n)

这里其实可以运用公式 num = n(n+1)/2,对算法进行优化,改为*

public void printsum(int count){
    int sum = 0;
    sum = count*(count+1)/2;
    System.out.print(sum);
}

这样算法的时间复杂度将由原来的O(n)降为O(1),大大地提高了算法的性能。

例二(O(log2n))

int i= 1;
while(i<n){
    i = i*2;
}

设(i=i*2)的频度是t, 则:2t(2的t次方)<=n; 两边去对数t<=log2n,考虑最坏情况,取最大值t=log2n。T(n) = O(log2n)。

例三(O(n2))

int num=0;
for(int i=0;i<n;i++){
    for(int j=0;j<n;j++){
        num++;
    }
}

时间复杂度为O(n2)。

常用算法的时间复杂度

参考

http://univasity.iteye.com/blog/1164707

http://www.cnblogs.com/songQQ/archive/2009/10/20/1587122.html

时间: 2024-10-06 03:47:38

算法时间复杂度计算的相关文章

算法时间复杂度的计算 [整理]

基本的计算步骤 时间复杂度的定义 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数.记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度. 根据定义,可以归纳出基本的计算步骤 1. 计算出基本操作的执行次数T(n) 基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语

常用排序算法之--时间复杂度计算

本篇博文非博主原创,系通过度娘收集整理而来,如有雷同,请联系博主,追加上转载出处.同时博主水平和理解有限,如有什么偏差请广大博友指定. 学习交流qq:792911374 时间复杂度 同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率.一个算法的时间开销记作:T(n),其中n表示算法的基本操作模块被重复执行的次数.算法的时间复杂度记做T(n)=O(f(n)),随着n的增大,算法执行时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高.时

转 算法时间复杂度的计算 [整理]

来自 http://univasity.iteye.com/blog/1164707 基本的计算步骤  时间复杂度的定义     一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数.记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度. 根据定义,可以归纳出基本的计算步骤 1. 计算出

算法时间复杂度的计算

常常说快速排序的算法时间复杂度为O(nlogn),但是这个值是怎么算出来的,为什么就是O(nlogn);很多书上一上来就大谈特谈那么多理论,我实在是受不了,我是看不懂,我不知道作者自己懂不懂,深刻的表示怀疑! 就拿这个logn来说,我隐隐记得在高中学的时候,这个底数省略的话就是默认10,查了资料也确实是10,但是貌似我们讲算法书上的意思都是以2为底,为什么他妈的书上不解释一下. 快速排序的时间复杂度为O(nlgn),即:每次都可以分为均匀两段,根据这个,推算出时间复杂度为O(nlgn).这个是如

【算法数据结构Java实现】递归的简单剖析及时间复杂度计算

1.理解 对于递归函数的理解,我觉得是比较重要的,因为很多大神能把递归函数用的惟妙惟肖,不光是他们的编程功力高深,更主要是能理解这个算法.比较直白的理解是,如果一个事件的逻辑可以表示成,f(x)=nf(x-1)+o(x)形式,那么就可以用递归的思路来实现. 编写递归逻辑的时候要知道如下法则: 1.要有基准 比如说,f(x)=f(x-1)+1,如果不加入基准,f(0)的值是多少,那么函数会无限执行下去,没有意义 2.不断推进 也就是f(x)=f(x-1)或是f(x)=f(x/n)之类的 当然每个递

【405】算法时间复杂度和空间复杂度的计算

参考:算法时间复杂度和空间复杂度的计算 时间复杂度计算 去掉运行时间中的所有加法常数.(例如 n2+n+1,直接变为 n2+n) 只保留最高项.(n2+n 变成 n2) 如果最高项存在但是系数不是1,去掉系数.(n2 系数为 1) 原文地址:https://www.cnblogs.com/alex-bn-lee/p/11044540.html

常用算法时间复杂度的计算方法

1. 时间复杂度 时间复杂度是指程序运行从开始到结束所需要的时间.时间复杂度的计算一般比较麻烦,故在数据结构的研究中很少提及时间复杂度.为了便于比较同一个问题的不同算法,通常做法是,从算法中选取一种对于所研究的问题来说是基本操作的原操作,以该基本操作重复执行的次数做为算法的时间量度.基本操作应是其重复执行次数和算法时间成正比的原操作,多数情况下它是最深层循环内的语句中的操作.算法的执行次数还要随输入集有关,此时要考虑所有可能输入数据的期望值,此时的算法时间复杂度叫平均时间复杂度.有事平均时间复杂

算法时间复杂度

flyfish 2015-7-21 引用自<大话数据结构> 算法时间复杂度定义 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级.算法的时间复杂度,也就是算法的时间量度,记作:T(n)=O(f(n)).它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度.其中f(n)是问题规模n的某个函数. 这样用大写O( )来体现算法时间复杂度的记法,我们称之为大O记法. 一般情

算法时间复杂度和空间复杂度

一.时间复杂度 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,今儿分析T(n)随n的变化情况并确定T(n)的数量.算法的时间复杂度,也就是算法的时间量度,T(n)=O(f(n)), 它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称时间复杂度.其中f(n)是问题规模n的某个函数. O(1) 常数阶 O(n) 线性阶 O(n2)  平方阶 1.推导大O阶方法 用常数1取代运行时间总的所有加法常数 在修改后的运行次数函数中,只保留