机器学习(九)—FP-growth算法

  本来老师是想让我学Hadoop的,也装了Ubuntu,配置了Hadoop,一时间却不知从何学起,加之自己还是想先看点自己喜欢的算法,学习Hadoop也就暂且搁置了,不过还是想问一下园子里的朋友有什么学习Hadoop好点的资料,求推荐~言归正传,继Apriori算法之后,今天来学习FP-growth算法。

  和Apriori算法相比,FP-growth算法只需要对数据库进行两次遍历,从而高效发现频繁项集。对于搜索引擎公司而言,他们需要通过查看互联网上的用词来找出经常在一块出现的词对,因此这些公司就需要能够高效的发现频繁项集的方法,今天要学习的FP-growth算法就可以完成此重任。

一 FP-growth算法                    

1.概述

  FP-growth算法是基于Apriori原理的,通过将数据集存储在FP(Frequent Pattern)树上发现频繁项集,但不能发现数据之间的关联规则。FP-growth算法只需要对数据库进行两次扫描,而Apriori算法在求每个潜在的频繁项集时都需要扫描一次数据集,所以说Apriori算法是高效的。其中算法发现频繁项集的过程是:

(1)构建FP树;

(2)从FP树中挖掘频繁项集。

2. 构建FP树

  FP表示的是频繁模式,其通过链接来连接相似元素,被连起来的元素可以看成是一个链表。将事务数据表中的各个事务对应的数据项按照支持度排序后,把每个事务中的数据项按降序依次插入到一棵以 NULL为根节点的树中,同时在每个结点处记录该结点出现的支持度。

  FP-growth算法的流程为:首先构造FP树,然后利用它来挖掘频繁项集。在构造FP树时,需要对数据集扫描两边,第一遍扫描用来统计频率,第二遍扫描至考虑频繁项集。下面举例对FP树加以说明。

  假设存在的一个事务数据样例为,构建FP树的步骤如下:


事务ID


事务中的元素


  001


  r,z,h,j,p


  002


 z,y,x,w,v,u,t,s


  003


    z


  004


  r,x,n,o,s


  005


 y,r,x,z,q,t,p


  006


 y,z,x,e,q,s,t,m

  结合Apriori算法中最小支持度的阈值,在此将最小支持度定义为3,结合上表中的数据,那些不满足最小支持度要求的将不会出现在最后的FP树中,据此构建FP树,并采用一个头指针表来指向给定类型的第一个实例,快速访问FP树中的所有元素,构建的带头指针的FP树如下:

结合绘制的带头指针表的FP树,对表中数据进行过滤,排序如下:

事务ID 事务中的元素 过滤和重排序后的事务
001 r,z,h,j,p z,r
002 z,y,x,w,v,u,t,s z,x,y,s,t
003 z z
004 r,x,n,o,s x,s,r
005 y,r,x,z,q,t,p z,x,y,r,t
006 y,z,x,e,q,s,t,m z,x,y,s,t

在对数据项过滤排序了之后,就可以构建FP树了,从NULL开始,向其中不断添加过滤排序后的频繁项集。过程可表示为:

  根据该思想就可以实现FP树的构建,下面就采用Python进行实现。我们知道,在第二次扫描数据集时会构建一棵FP树,并采用一个容器来保存树。首先创建一个类来保存树的每一个节点,代码如下:

#coding:utf-8
from numpy import *

class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode      #needs to be updated
        self.children = {} 

    def inc(self,numOccur):
        self.count += numOccur

    def disp(self,ind = 1):
        print ‘ ‘*ind,self.name,‘ ‘,self.count
        for child in self.children.values():
            child.disp(ind+1)
‘‘‘
#test
rootNode = treeNode(‘pyramid‘,9,None)
rootNode.children[‘eye‘] = treeNode(‘eye‘,13,None)
a = rootNode.disp()
print a
‘‘‘

这样,FP树对应的数据结构就建好了,现在就可以构建FP树了,FP树的构建函数如下:

#FP构建函数
def createTree(dataSet,minSup = 1):
    headerTable = {}
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item,0) + dataSet[trans]#记录每个元素项出现的频度
    for k in headerTable.keys():
        if headerTable[k] < minSup:
            del(headerTable[k])
    freqItemSet = set(headerTable.keys())
    if len(freqItemSet) == 0:#不满足最小值支持度要求的除去
        return None,None
    for k in headerTable:
        headerTable[k] = [headerTable[k],None]
    retTree = treeNode(‘Null Set‘,1,None)
    for tranSet,count in dataSet.items():
        localD = {}
        for item in tranSet:
            if item in freqItemSet:
                localD[item] = headerTable[item][0]
        if len(localD) > 0:
            orderedItems = [v[0] for v in sorted(localD.items(),key = lambda p:p[1],reverse = True)]
            updateTree(orderedItems,retTree,headerTable,count)
    return retTree,headerTable

def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:
        inTree.children[items[0]].inc(count)
    else:
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None:
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
    if len(items) > 1:
        updateTree(items[1::], inTree.children[items[0]], headerTable, count)

def updateHeader(nodeToTest, targetNode):
    while (nodeToTest.nodeLink != None):
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode

在运行上例之前还需要一个真正的数据集,结合之前的数据自定义数据集:

def loadSimpDat():
    simpDat = [[‘r‘, ‘z‘, ‘h‘, ‘j‘, ‘p‘],
               [‘z‘, ‘y‘, ‘x‘, ‘w‘, ‘v‘, ‘u‘, ‘t‘, ‘s‘],
               [‘z‘],
               [‘r‘, ‘x‘, ‘n‘, ‘o‘, ‘s‘],
               [‘y‘, ‘r‘, ‘x‘, ‘z‘, ‘q‘, ‘t‘, ‘p‘],
               [‘y‘, ‘z‘, ‘x‘, ‘e‘, ‘q‘, ‘s‘, ‘t‘, ‘m‘]]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        retDict[frozenset(trans)] = 1
    return retDict

运行:

#test
simpDat = loadSimpDat()
initSet  = createInitSet(simpDat)
myFPtree,myHeaderTab = createTree(initSet,3)
a = myFPtree.disp()
print a

这样就构建了FP树,接下来就是使用它来进行频繁项集的挖掘。

3. 从FP树中挖掘频繁项集

  在构建了FP树之后,就可以抽取频繁项集了,这里的思想和Apriori算法大致类似,首先从氮元素项集合开始,然后在此基础上逐步构建更大的集合。大致分为三个步骤:

(1)从FP树中获得条件模式基;

(2)利用条件模式基,构建一个条件FP树;

(3)迭代重复(1)和(2),直到树包含一个元素项为止。

  首先,获取条件模式基。条件模式基是以所查找元素项为结尾的路径集合,表示的是所查找的元素项与树根节点之间的所有内容。结合构建FP树绘制的图,r的前缀路径就是{x,s}、{z,x,y}和{z},其中的每条前缀路径都与一个计数值有关,该计数值表示的是每条路径上r的数目。为了得到这些前缀路径,结合之前所得到的头指针表,头指针表中包含相同类型元素链表的起始指针,根据每一个元素项都可以上溯到这棵树直到根节点为止。该过程对应的代码如下:

def ascendTree(leafNode, prefixPath): #ascends from leaf node to root
    if leafNode.parent != None:
        prefixPath.append(leafNode.name)
        ascendTree(leafNode.parent, prefixPath)

def findPrefixPath(basePat, treeNode): #treeNode comes from header table
    condPats = {}
    while treeNode != None:
        prefixPath = []
        ascendTree(treeNode, prefixPath)
        if len(prefixPath) > 1:
            condPats[frozenset(prefixPath[1:])] = treeNode.count
        treeNode = treeNode.nodeLink
    return condPats

#test
simpDat = loadSimpDat()
initSet  = createInitSet(simpDat)
myFPtree,myHeaderTab = createTree(initSet,3)
a = myFPtree.disp()
b = findPrefixPath(‘x‘,myHeaderTab[‘x‘][1])
print b

  运行代码,与所给数据一致。接下来就可以创建条件FP树了。对于每一个频繁项,都需要创建一棵条件FP树,使用刚才创建的条件模式基作为输入,采用相同的建树代码来构建树,相应的递归发现频繁项、发现条件模式基和另外的条件树。对应的递归查找频繁项集的函数如下:

def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
    bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1])]#(sort header table)
    for basePat in bigL:
        newFreqSet = preFix.copy()
        newFreqSet.add(basePat)
        freqItemList.append(newFreqSet)
        condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
        myCondTree, myHead = createTree(condPattBases, minSup)
        if myHead != None:
            mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)

结合之前的数据验证发现无误。

二  从新闻网站点击流中挖掘

上述在自定义的数据中队算法进行了验证,现在选取实际的数据进行测试。在这个数据集合中,包含了100万条记录,文件中的每一行包含某个用户浏览过的新闻报道,用来寻找那些至少被10万人浏览过的报道。代码如下:

#从新闻网站点击流中挖掘
parsedData = [line.split() for line in open(‘kosarak.dat‘).readlines()]
initSet = createInitSet(parsedData)
myFPtree,myHeaderTab = createTree(initSet,100000)
myFreqList = []
a = mineTree(myFPtree,myHeaderTab,100000,set([]),myFreqList)
b = len(myFreqList)
print b
print myFreqList

这样就实现了此功能。

以上是我自己的总结和理解,难免有错,还望各位朋友不吝赐教~

时间: 2024-12-18 08:49:42

机器学习(九)—FP-growth算法的相关文章

Frequent Pattern 挖掘之二(FP Growth算法)(转)

FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结构,叫做frequent-pattern tree(频繁模式树).下面就详细谈谈如何构造这个树,举例是最好的方法.请看下面这个例子: 这张表描述了一张商品交易清单,abcdefg代表商品,(ordered)frequent items这一列是把商品按照降序重新进行了排列,这个排序很重要,我们操作的所

Aprior算法、FP Growth算法

数据挖掘中有一个很重要的应用,就是Frequent Pattern挖掘,翻译成中文就是频繁模式挖掘.这篇博客就想谈谈频繁模式挖掘相关的一些算法. 定义 何谓频繁模式挖掘呢?所谓频繁模式指的是在样本数据集中频繁出现的模式.举个例子,比如在超市的交易系统中,记载了很多次交易,每一次交易的信息包括用户购买的商品清单.如果超市主管是个有心人的话,他会发现尿不湿,啤酒这两样商品在许多用户的购物清单上都出现了,而且频率非常高.尿不湿,啤酒同时出现在一张购物单上就可以称之为一种频繁模式,这样的发掘就可以称之为

FP—Growth算法

FP_growth算法是韩家炜老师在2000年提出的关联分析算法,该算法和Apriori算法最大的不同有两点: 第一,不产生候选集,第二,只需要两次遍历数据库,大大提高了效率,用31646条测试记录,最小支持度是2%, 用Apriori算法要半个小时但是用FP_growth算法只要6分钟就可以了,效率非常明显. 它的核心是FP_tree,一种树型数据结构,特点是尽量把相同元素用一个节点表示,这样就大大减少了空间,和birch算法有类似的思想.还是以如下数据为例. 每一行表示一条交易,共有9行,既

FP Tree算法原理总结

在Apriori算法原理总结中,我们对Apriori算法的原理做了总结.作为一个挖掘频繁项集的算法,Apriori算法需要多次扫描数据,I/O是很大的瓶颈.为了解决这个问题,FP Tree算法(也称FP Growth算法)采用了一些技巧,无论多少数据,只需要扫描两次数据集,因此提高了算法运行的效率.下面我们就对FP Tree算法做一个总结. 1. FP Tree数据结构 为了减少I/O次数,FP Tree算法引入了一些数据结构来临时存储数据.这个数据结构包括三部分,如下图所示: 第一部分是一个项

FP Growth

在Apriori算法原理总结中,我们对Apriori算法的原理做了总结.作为一个挖掘频繁项集的算法,Apriori算法需要多次扫描数据,I/O是很大的瓶颈.为了解决这个问题,FP Tree算法(也称FP Growth算法)采用了一些技巧,无论多少数据,只需要扫描两次数据集,因此提高了算法运行的效率.下面我们就对FP Tree算法做一个总结. 1. FP Tree数据结构 为了减少I/O次数,FP Tree算法引入了一些数据结构来临时存储数据.这个数据结构包括三部分,如下图所示: 第一部分是一个项

【甘道夫】并行化频繁模式挖掘算法FP Growth及其在Mahout下的命令使用

今天调研了并行化频繁模式挖掘算法PFP Growth及其在Mahout下的命令使用,简单记录下试验结果,供以后查阅: 环境:Jdk1.7 + Hadoop2.2.0单机伪集群 +  Mahout0.6(0.8和0.9版本都不包含该算法.Mahout0.6可以和Hadoop2.2.0和平共处有点意外orz) 部分输入数据,输入数据一行代表一个购物篮: 4750,19394,25651,6395,5592 26180,10895,24571,23295,20578,27791,2729,8637 7

机器学习九大算法---回归

机器学习九大算法---回归 转自:http://blog.csdn.net/xiaohai1232/article/details/59551240 回归分析即,量化因变量受自变量影响的大小,建立线性回归方程或者非线性回归方程,从而达对因变量的预测,或者对因变量的解释作用. 回归分析流程如下: ①探索性分析,画不同变量之间的散点图,进行相关性检验等,了解数据的大致情况,以及得知重点关注那几个变量: ②变量和模型选择,: ③回归分析假设条件验证: ④共线性和强影响点检查: ⑤模型修改,并且重复③④

FP - growth 发现频繁项集

FP - growth是一种比Apriori更高效的发现频繁项集的方法.FP是frequent pattern的简称,即常在一块儿出现的元素项的集合的模型.通过将数据集存储在一个特定的FP树上,然后发现频繁项集或者频繁项对.通常,FP-growth算法的性能比Apriori好两个数量级以上. FP树与一般的树结构类似,但它通过链接(Link)来连接相似元素,被连起来的元素项可以看成一个链表. 上图是一棵FP树,一个元素项可以在一棵FP树种出现多次,FP树的节点会存储项集的出现频率,每个项集会以路

九大排序算法总结

九大排序算法再总结 算法的由来:9世纪波斯数学家提出的:“al-Khowarizmi” 排序的定义: 输入:n个数:a1,a2,a3,...,an 输出:n个数的排列:a1',a2',a3',...,an',使得a1'<=a2'<=a3'<=...<=an'. In-place sort(不占用额外内存或占用常数的内存):插入排序.选择排序.冒泡排序.堆排序.快速排序. Out-place sort:归并排序.计数排序.基数排序.桶排序. 当需要对大量数据进行排序时,In-plac

机器学习(5)之牛顿算法

机器学习(5)之牛顿算法 1. 牛顿迭代算法简介 设r是的根,选取 作为r的初始近似值,过点 做曲线 的切线L,L的方程为 ,求出L与x轴交点的横坐标 , 称x 1 为r的一次近似值. 过点 做曲线 的切线,并求该切线与x轴交点的横坐标 ,称 为r的二次近似值.重复以上过程,得r的近似值序列,其中, 称为r的 次近似值,上式称为牛顿迭代公式. 用牛顿迭代法解非线性方程,是把非线性方程线性化的一种近似方法.把 在点 的某邻域内展开成泰勒级数 ,取其线性部分(即泰勒展开的前两项),并令其等于0,即